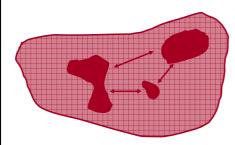
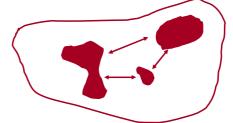


La dispersion : un mécanisme clé du fonctionnement génétique et démographique des populations

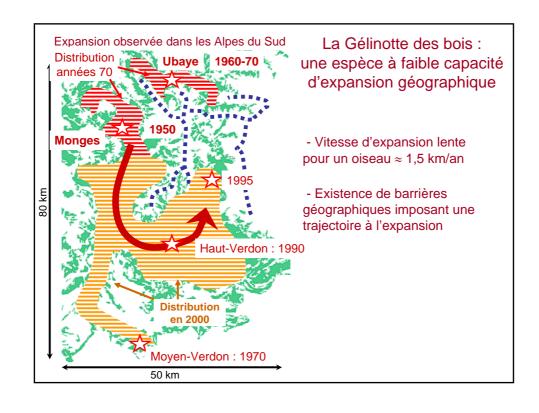
Contrôle du flux de gènes


Contrôle du flux d'individus : fragmentation «fonctionnelle »

Contrôle de la synchronie entre populations

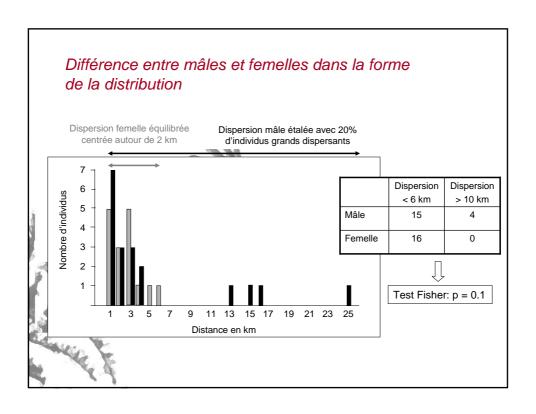

Contrôle de la l'aptitude à la colonisation

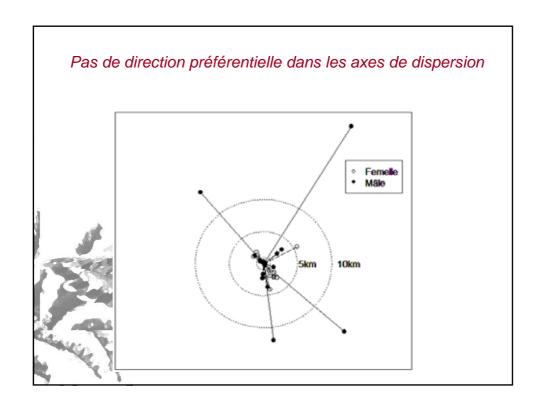
La Gélinotte des bois : une espèce «à priori» sensible à la fragmentation de l'habitat

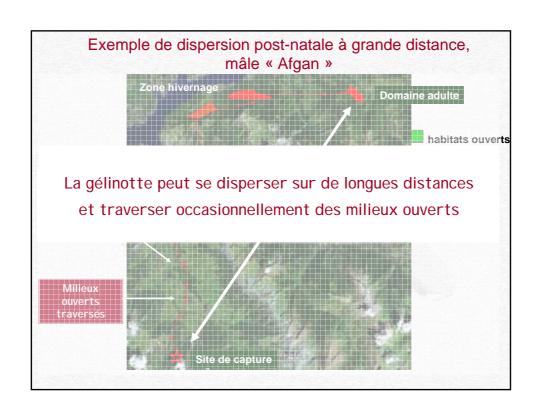

- Observation de la présence/absence de l'espèce dans des habitats fragmentés

Matrice forestière Effet d'isolement au dessus de 1-2 km entre taches d'habitats

Matrice de milieux ouverts Effet d'isolement au dessus de 200-250 m







Comparaison des distances de dispersion entre les mâles et les femelles

	Moyenne	Médiane	Minimum	Maximum		
Mâles (n = 11) :	6.3 km	2.8 km	0.27 km	25 km		
Femelles (n = 14) :	1.9 km	1.9 km	0.24 km	5.5 km		
Différence significative : $P = 0.05$						
	7					

Différences comportementales entre les grands et petits dispersants

- Grands dispersants : Dispersion en deux temps avec un déplacement automnal le plus important et un déplacement printanier plus réduit (médiane : 4.5 km)
- ⇒ Arrivée tardive sur le site printanier (médiane : 24 avril)
- Petits dispersants : Dispersion principalement automnale seuls 21% des mâles et 7% des femelles réalisent un déplacement printanier plus réduit (médiane : 1.4 km et 0.7 km)
- Arrivée plus précoce sur le site printanier (médiane : 2 janvier)

Différences comportementales entre les grands et petits dispersants

- Grands dispersants : Départ assez brutal et tardif selon une direction assez rectiligne jusqu'au premier site d'hivernage
- Petits dispersants : Date de départ variable. Une partie des individus développent des comportements erratiques dans toutes les directions pour finalement retourner à faible distance du site de naissance.

La gélinotte est-elle vraiment une espèce à faible capacité de dispersion ?

- -Peu de données disponibles sur cette espèce pour confirmer nos résultats 7 juvéniles radio-équipées ailleurs dans le monde min = 0.22 km, max = 6.8 km 90 individus bagués en Scandinavie et Russie Moyenne = 1 km, max = 10 km
- Les données disponibles chez d'autres Tétraonidés révèlent des distances de dispersion moyenne supérieures pour certaines espèces : Tétras-lyre, Tétras du Canada, Gélinotte huppée, lagopède des saules, Lagopède à queue blanche
- -Et comparables chez d'autres : Lagopède d'Ecosse, Tétras sombre
- Les distances maximum citées dans les études télémétriques sont du même ordre de grandeur (20-30 km)

La gélinotte présente-elle un patron de dispersion atypique chez les tétraonidés ?

 Chez toutes les espèces suffisamment étudiées par télémétrie, les femelles se dispersent plus loin que les mâles

De 1.5 à 8 fois plus pour 11 études publiées

Espèce	Femelle : Moyenne (max)	Mâle : Moyenne (max)	Auteur	
Tetras-Lyre	8 km (29 km)	1.5 km (8.2 km)	(Caizergues and Ellison 2002)	
Tetras-Lyre	6 km (20 km)		(Warren and Baines 2002)	
Tetras sombre	e 1.4 km (11 km)	0.9 km (2.6 km)	(Hines 1986)	
Tetras du can	ada 5 km	0.7 km	(Boag and Schroeder 1992)	
Tetras du can	ada 4.9 km	0.6 km	(Schroeder 1986)	
Gelinotte hup	pée 4.8 km	2.1 km	(Small and Rusch 1989)	
Gelinotte hup	pée 4.9 km	2.4 km	(Rusch et al. 2000)	
Lagopède d'Écosse	2 km (10 km)	0.5 km (1 km)	(Hudson 1992)	
Lagopède des saules	10.2 km	3.4 km	(Hörnell-Willebrand 2005)	
Lagopède des saules	11.4 km	2.6 km	(Smith 1997)	
Lagopède à qu blanche	ueue 4 km	1.25 km	(Giesen and Braun 1993)	

Le patron de dispersion observé pourrait expliquer les observations empiriques :

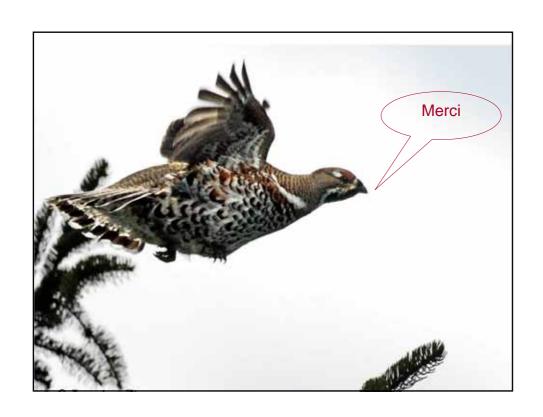
- sensibilité à la fragmentation
- faible aptitude à la colonisation

La faible dispersion des femelles limiterait :

La possibilité de « secourir » des petites populations isolées dans une matrice d'habitat ouvert

La rapidité d'expansion dans de nouveaux habitats du fait de l'incapacité à établir des « têtes de pont » en amont du front de colonisation

Conclusion:


La gélinotte pourrait être une des epèces de tétraonidés les plus sensibles à la fragmentation de son habitat.

La conservation de populations viables implique alors probablement une continuité forestière sur de vastes espaces associée à une gestion sylvicole préservant la qualité de l'habitat

Le maintien de petites populations isolées à basse altitude et leur reconquête éventuelle en cas de disparition, semble très improbable à moyen terme

