ECOLE NATIONALE VETERINAIRE DE LYON

Année 2005 - Thèse n° ...

L'INCONTINENCE URINAIRE DU JEUNE CHEZ LES CARNIVORES DOMESTIQUES

THESE

Présentée à l'UNIVERSITE CLAUDE-BERNARD - LYON I (Médecine - Pharmacie) et soutenue publiquement le 4 novembre 2005 pour obtenir le grade de Docteur Vétérinaire

par

DUPONT Anne-Laure Née le 29 juillet 1981 à Paris 14ème (75)

DEPARTEMENTS ET CORPS ENSEIGNANT DE L'ECOLE NATIONALE VETERINAIRE DE LYON éphane MARTINOT Au 1er JANVIER 2005

Directeur : Stéphane MARTINOT

					C.FLEURY			Expertise nécropsique
				A. LEBLOND A. BENAMOU-SMITH		JL. CADORE O. LEPAGE		DEPART HIPPIQUE Pathologie équine Chrique équine
		IPAC IPAC	C. FARMER R. SULLIVAN					Langues
					P. JAUSSAUD P. BERNY	G. KECK		Pharmacie / Toxicologie Législation du Médicament
				J.J. IHLEBAULI J.M. BONNET-GARIN 90 % T. BURONFOSSE V. LAMBERT	E. BENOIT F. GRAIN	F. GARNIER	K BOLVIN	Physiologie /therapeutique Biophysique /Biochimie Génétique et Biologie moléculaire
				TI THIEDAIN T		17	p porting	DEPART SCIENCES BIOLOGIQUES
N GIRAUD P. DEBARNOT D. LAURENT		MCA	D. LAURENT	R. FRIKHA M.A. ARCANGIOLI D. LE GRAND	T. ALOGNINOUWA	P. BEZILLE		Patho Animaux de Production
				G. EGRON-MORAND S. BUFF P. GUERIN	M. RACHAIL-BRETIN	F. BADINAND		Biol & Patho de la Reproduction
				D. GRANCHER L. ALVES de OLIVEIRA				Nutrition et Alimentation
	L. MOUNIER			P. LETERME		M. FRANCK		DEPART DES PRODUCTIONS ANIMALES Zootechnie, Ethologie & Economie rurale
F. DURIEUX		MCC	J. SONET	E. CAUVIN				Imagerie médicale
C. GALET C. ESCRIOU			M. HUGONNARD	L. CHABANNE F. PONCE		J.L. CADORE		Médecine interne
TO IBUB 1		X MCA MCA	D. WATRELOT-VIRIEUX P. BELLI D. PIN	T. MARCHAL	C. FLEURY	J.P. MAGNOL C. FOURNEL		Anatomie-pathologique/Dermatologie-Cancérologie/ Hématologie
BENREDOUANE K. N. GAY I. GOUJON	C. CAROZZO	MCC MCC MCC	G. CHANOIT S. JUNOT K. PORTIER C. DECOSNE-JUNOT		D. FAU E. VIGUIER D. REMY	J.P GENEVOIS		Chirurgie et Anesthésiologie
		MCC	R. DA ROCHA CARARO	S. SAWAYA	T. ROGER	E. CHATELAIN		DEPART DES ANIMAUX DE COMPAGNIE Anatomie
				N. CHALVEI-MONFRAY				
				P. SABATIER M.L. DELIGNETTE 80% K. CHALVET-MONFRAV				Bio-Mathématiques
					A LACHERETZ			Législation & Jurisprudence
	-	ISPV	S. COLARDELLE	A. GONTHIER	P. DEMONT C. VERNOZY	G. CHANTEGRELET		Qualité et Sécurité des Aliments
				MP. CALLAIT CARDINAL L. ZENNER		G. BOURDOISEAU	MC. CHAUVE	Parasitologie & Maladies parasitaires
				J. VIALARD	A. L'ACHERETZ M. ARTOIS			Pathologie infectieuse
				V. GUERIN-FAUBLEE 90% A. KODJO D. GREZEL			Y. RICHARD	DEPART SANTÉ PUBLIQUE VÉTÉRINAIRE Microbiologie, Immunologie, Pathologie Générale
AERC Chargés de consultations et d'enseignement	AE.	IPAC	Contractuel, Associé, IPAC Er ISPV	MC	PR2	PRI	PREX	DEPARTEMENT

A Monsieur le Professeur GHARIB

De la Faculté de Médecine de Lyon.

Qui nous a fait l'honneur d'accepter de présider notre jury de thèse. Hommages respectueux.

A Monsieur le Professeur FAU

De l'Ecole Nationale Vétérinaire de Lyon.

Pour nous avoir proposé ce travail et pour l'avoir encadré avec gentillesse et disponibilité,

En témoignage de notre reconnaissance.

Sincères remerciements.

A Monsieur le Professeur ROGER

De l'Ecole Nationale Vétérinaire de Lyon.

Qui nous a fait l'honneur de juger notre travail et de faire partie de notre jury de thèse, Qu'il trouve ici l'expression de notre respect et notre reconnaissance. Sincères remerciements.

A mes parents,

Vous m'avez toujours fait confiance et soutenue dans ce que j'ai entrepris. Merci d'avoir tout fait pour m'aider au mieux et merci aussi de me supporter. Trouvez ici le témoignage de ma reconnaissance et de mon amour.

A ma sœur, Marie-Aude,

Pour nos fous rires, nos grandes discussions avant de dormir, nos batailles de paires de chaussettes. Pour notre complicité malgré les coups de gueule, t'es une p'tite sœur géniale.

A mon frère, Pierre-Yves,

Le « p'tit » dernier, le grand sportif de la famille, LE moniteur de voile de Chalon. Pour ton humour. Bon courage pour cette année difficile, j'ai confiance en toi.

A papy et mamie,

Pour être des grands-parents dynamiques, pour votre gentillesse, votre présence, votre générosité. Merci de n'avoir jamais douté de moi pendant ces dures années de prépa. Merci pour les vacances à Fréjus et les week-ends à Chatel.

A mamie Ducloux,

La plus jeune et la plus marante des arrières grand-mères. Garde la forme et le moral, tu as encore de belles années à passer à nos cotés.

A papy de Nîmes et Nicole,

Pour leur gentillesse, leur amour et leur accueil, toujours chaleureux.

A Isabelle, et ma p'tite cousine Victoire,

Pour leur caractère, qui ne s'arrange pas au fil des générations. Merci pour les bons moments qu'on a passé ensemble.

A Romain, pour nos coups de fils manqués, nos soirées ciné ratées (Dreamcatcher, tu te souviens ?!).

A Tyboon,

Pour les coups de gueule (que j'ai enfin !) mais surtout pour les moments de tendresse. A notre avenir...

A toutes les bombasses.

Devenues morues avec le temps. Je n'oublierai jamais nos pré-soirées arrosées à la rès, nos boums déchaînées, nos discussions sans tabou, nos p'tites soirées filles, nos footings au parc (enfin, pas pour toutes!). C'est grâce à vous que j'ai passé de si belles années, je sais qu'on reverra souvent, je vous adore toutes.

A Héloïse, ma voisine St-Genoise, à Herbal Essence (tu nous le paieras!), aux photos « grosses bouches ».

A Céline, t'inquiètes, je vais pas dire que tu es un boulet! A Gérard Blanc, à nos talents de compositeur non reconnus!

A Eve, récemment exilée, les soirées morues sans toi ne seront pas pareilles.

A Julia, qui, d'un regard, vous charme ou vous fusille, selon les circonstances...

A Steph, son don pour attirer les gros lourds à la plage.

A Emilie, nos après-midis à cheval à Pollionnay (trop cool, j'ai un poney !!).

A Pascale, spécialiste du prolapsus rectal porcin, « Au fait, on le pique où un cochon ? »

A Carine, sa bonne humeur et son enthousiasme à toute épreuve.

A Tox, pour tes recettes innovantes, c'est toujours un régal.

Et à tous les RHC, avec qui j'ai partagé les semaines blanches, les inter-écoles, les exams...

A mes compagnons de voyage : Céline, Eloi, Cam, Adrien : pour nos vacances mexicaines et fréjussiennes, nos baignades par 15 ou 32°C, au bleu de la mer des Caraïbes, au rouge des coups de soleil, à l'invention du lit 5 places.

A Maryline et Rachel,

Nos guéguerres nocturnes (y'a un E à vengeance!), nos WE de ski (j'y vais mais j'ai peur!).

A Sophie

Notre coloc', les recettes inventées (la tarte aux pommes «calzone», une première !)

A Splinter et Ambre.

Mes deux poulots préférés, pour nos danses endiablées en boum.

Ma fille de clinique **Claire** et mon papa de clinique **Fis**, vous avez rendu mes matinées en clinique très agréables.

PLAN

PLAN	11
TABLE DES ILLUSTRATIONS	19
LISTE DES ABREVIATIONS	23
INTRODUCTION	25
CHAPITRE 1: DEVELOPPEMENT EMBRYONNAIRE DE L'APPA	REIL URINAIRE
ET PHYSIOLOGIE DE LA MICTION	27
I- EMBRYOLOGIE: MISE EN PLACE DE L'APPAREIL URINAIRE	29
A- Les reins	29
1- Développement embryonnaire	29
a- Pronéphros	30
b- Mésonéphros	30
c- Métanéphros	31
2- Anatomie définitive	33
B- Les voies urinaires	35
1- Développement embryonnaire	35
2- Anatomie définitive	39
a- Le bassinet	40
b- Les uretères	40
c- La vessie	41
d- L'urètre	43
II- PHYSIOLOGIE DE LA MICTION	44
A- Les structures impliquées	44
1- Les muscles	44
2- Les centres nerveux	45
3- Les nerfs	45
a- L'innervation motrice	45
b- L'innervation sensitive	46
c- L'innervation intra-pariétale	47
B- Mise en jeu de l'appareil vésico-sphinctérien	48
1- Le cycle de fonctionnement vésico-urétral	48

2- Remplissage	48
a- Continence passive	48
b- Continence active	49
3- Vidange	49
a- Initiation	49
b- Entretien	49
CHAPITRE 2: ETIOPATHOGENIE ET THERAPEUTIQUE DES P	RINCIPALES
CAUSES D'INCONTINENCE CONGENITALE	
I- INCONTINENCE NON NEUROGENE: LES ANOMALIES CONGENITALES	DE L'APPAREIL
URO-GENITAL	53
A- Les reins	
1- L'ectopie rénale	53
2- L'agénésie rénale	54
B- Les uretères	56
1- Méga-uretère congénital	57
2- Valvules urétérales congénitales	57
3- Reflux vésico-urétéral	58
4- Urétérocèles	59
C- La vessie	64
1- Persistance du canal de l'ouraque	64
2- Duplication vésicale	66
3- Vessie pelvienne	68
4- Aplasie ou hypoplasie vésicale	68
5- Exstrophie vésicale	69
6- Fistule uro-rectale	69
D- L'urètre	70
1- Duplication urétrale	70
2- Sténose congénitale	72
3- Incompétence du sphincter urétral	73
4- Hypospadias et épispadias	86
5- Fistules	89
a- Fistule urétro-rectale	89
b- Fistule uro-génitale	92

c- Fistule urétro-périnéale	92
E- Anomalies vaginales	92
F- Intersexualité	95
1- Etude générale	95
2- Hermaphrodisme vrai	97
3- Pseudohermaphrodisme femelle	100
4- Pseudohermaphrodisme mâle	103
II- INCONTINENCE NEUROGENE: LES AFFECTIONS NEUROLOGIQUES CO	ONGENITALES 108
A- Etude spécifique des affections neurologiques congénitales	
1- Sténose vertébrale	108
2- Malformations osseuses	110
a- Vertèbres de transition	111
b- Hémi-vertèbres	111
c- Fusions vertébrales	113
d- Malformations de l'os occipital, de l'atlas et de l'axis	114
3- Exosotoses ostéocartilagineuses	117
4- Spina bifida	119
5- Dysraphisme médullaire	124
6- Agénésie caudale	126
B- Symptomatologie générale	
Localisation de la lésion	
1- Vessie de type MNP (motoneurone périphérique)	129
a- Etiologie	129
b- Caractères de l'incontinence urinaire	130
c- Symptômes associés	130
2- Vessie type MNC (motoneurone central)	130
a- Etiologie	130
b- Caractères de l'incontinence urinaire	130
c- Signes cliniques associés	131
3- Syndrome de la queue de cheval	131
C- Traitement	
1- Lésions type MNP	132
2- Lésions type MNC	133

CHAPITRE 3: ETUDE DE LA CAUSE LA PLUS FREQUENTE D'INCONTINENCE URINAIRE CHEZ LE JEUNE CARNIVORE DOMESTIQUE : L'ECTOPIE

URETERALE	135
I- DEFINITION	137
II- PATHOGENIE	137
A- Rappels du développement normal des uretères	
B- Développement d'un uretère ectopique	
1- Uretère ectopique situé en aval sur le tractus urinaire	138
2- Uretère ectopique vaginal	139
3- Uretère ectopique utérin	139
III- LESIONS	140
A- Uretères ectopiques extra-muraux	140
B- Uretères ectopiques intra-muraux	141
1- Simple	141
2- Ouverture urétérale double	142
3- Gouttière urétérale	142
C- Lieu d'abouchement des uretères ectopiques	143
1- Chez le chien	143
2- Chez le chat	143
D- Anomalies associées	143
E- Affections secondaires	144
1- Hypoplasie vésicale	144
2- Méga-uretère et hydronéphrose	144
3- Pyélonéphrite	144
4- Autres infections	145
IV- EPIDEMIOLOGIE	145
A- Fréquence	145
B- Type d'uretère ectopique	145
1- Caractère unilatéral ou bilatéral	145
2- Type de lésion	146
3- Anomalies associées	146
C- Sexe	146
D- Age	147

E- Races prédisposées	
F- Hérédité	147
V- CLINIQUE	148
A- Incontinence urinaire	148
1- Signe d'appel	148
2- Pathogénie	148
3- Caractéristiques de l'incontinence	148
B- Signes cliniques associés	149
VI- DIAGNOSTIC	149
A- Commémoratifs, anamnèse et examen clinique	
B- Examens complémentaires diagnostiques	
1- L'urographie intraveineuse	151
a- Intérêts	151
b- Critères diagnostiques	151
c- Informations complémentaires	153
d- Limites	154
e- Conclusion	155
2- L'urétrocystographie rétrograde	155
3- La vaginocystographie rétrograde	156
a- Intérêts	156
b- Critères diagnostiques	156
c- Informations complémentaires	157
d- Limites	157
4- L'échographie abdominale	157
a- Intérêts	157
b- Critères diagnostiques	157
c- Informations complémentaires	159
d- Limites	160
e- Conclusion	160
5- L'endoscopie	160
a- Intérêts	160
b- Technique	161
c- Critères diagnostiques	161
d- Informations complémentaires	162

e- Limites	162
f- Conclusion	162
6- La tomodensitométrie	163
a- Intérêts	163
b- Technique	163
c- Critères diagnostiques	164
d- Informations complémentaires	165
e- Limites	165
f- Conclusion	166
7- L'exploration chirurgicale	166
8- Comparaison des différentes méthodes diagnostiques	166
C- Recherche de lésions associées	167
1- L'analyse urinaire et la cytobactériologie	167
2- Les analyses sanguines	168
a- Analyse biochimique	168
b- Numération formule sanguine	168
3- Epreuves urodynamiques	168
a- Intérêts	168
b- Résultats	169
c- Limites :	170
d- Conclusion	170
VII- TRAITEMENT	171
A- Choix du traitement chirurgical	171
1- En cas de lésions rénales	171
2- En l'absence de lésion rénale	171
B- Traitement de soutien	
C- Exploration du tractus urinaire dans sa totalité	
D- Urétéro-néphrectomie	
1- Indications	173
2- Technique chirurgicale	173
E- Urétéronéocystostomie	174
1- Définition	174
2- Indications	174
3- Technique chirurgicale	174

F- Néo-urétérostomie	177
1- Définition	177
2- Indications	177
3- Technique chirurgicale	177
a- Uretère ectopique intra-mural simple	177
b- Uretère ectopique intra-mural avec ouverture double	180
c- Uretère ectopique intra-mural avec gouttière urétérale	180
G- Association de la correction de l'ectopie urétérale avec une colposuspension	181
1- Intérêt	181
2- Etude de Mouatt et Watt	181
a- Technique chirurgicale	181
b- Résultats	181
c- Limites	182
VIII- SOINS POSTOPERATOIRES:	182
A- Antibiothérapie	182
B- Contrôle de la douleur	182
C- Contrôle de la diurèse	182
IX- Suivi	183
A- Résolution de l'incontinence	183
B- Suivi par urographie intraveineuse	183
C- Suivi des paramètres sanguins	183
X- COMPLICATIONS POSTOPERATOIRES	184
A- Dysurie	184
B- Dilatation urétérale et hydronéphrose	184
C- Fuite ou rupture de l'anastomose	184
D- Infections du tractus urinaire	185
E- Autres complications	185
F- Comparaison des complications en fonction de la nature de l'intervention	185
XI- PRONOSTIC	186
A- Facteurs influençant le pronostic	186
B- Causes d'incontinence postopératoire	187
1- Echec chirurgical	187
2- Hypoplasie vésicale	187
3- Incompétence du sphincter urétral	188

C- Conduite à tenir	188
1- Diagnostic de la cause de l'incontinence	188
2- Traitement	188
CONCLUSION	191
BIBLIOGRAPHIE	193
ANNEXES	203

TABLE DES ILLUSTRATIONS

Liste des figures :

Figure 1 : Développement du métanéphros à partir du blastème métanéphrogène et du				
bourgeon urétérique	. 31			
Figure 2 : Développement de l'appareil urinaire	. 33			
Figure 3: Vue ventrale de l'abdomen caudale d'une chienne (A) et d'une chatte (B)	. 34			
Figure 4 : Séparation des appareils urogénital et digestif lors de l'embryogenèse	. 36			
Figure 5 : Développement embryonnaire normal du tractus urinaire chez le chien	. 37			
Figure 6 : Schéma du développement des voies urinaires	. 38			
Figure 7 : Appareil uro-génital du chien mâle, coupe sagittale	. 39			
Figure 8 : Appareil uro-génital de la chienne, coupe sagittale	. 39			
Figure 9 : Jonction urétéro-vésicale	. 41			
Figure 10 : Vue intérieure de la vessie, paroi dorsale	. 42			
Figure 11 : Physiologie de la miction	. 47			
Figure 12 : Abouchement des uretères au niveau de la vessie	. 60			
Figure 13 : Echographie d'une urétérocèle	. 62			
Figure 14 : Les anomalies congénitales de l'ouraque	. 65			
Figure 15 : Répartition des forces de pression lors de décubitus latéral sur la vessie et				
l'urètre lorsqu'ils sont en position physiologique	. 75			
Figure 16 : Répartition inégale des forces de pression lors de décubitus latéral sur la vessi	ie			
et l'urètre proximal lors de « vessie pelvienne ».	. 75			
Figure 17 : Vue ventrale et coupe transversale de l'abdomen caudal après colposuspension				
	. 79			
Figure 18 : Reconstruction urétrale par excision du col vésical	. 81			
Figure 19 : Reconstruction urétrale par rabats du col vésical	. 83			
Figure 20 : Technique chirurgicale de correction de l'hypospadias	. 88			
Figure 21 : Schéma représentant la localisation de la fistule urétro-rectale chez une chient	ne.			
	. 90			
Figure 22 : Origine embryonnaire des tissus de l'appareil génital femelle	. 93			
Figure 23 : Représentations schématiques de différentes anomalies anatomiques rencontré	es			
chez les animaux intersexués	. 97			

Figure 24 : Cellules en métaphase chez un animal hermaphrodite	99
Figure 25 : Technique chirurgicale de la clitorectomie	
Figure 26 : Développement d'un uretère ectopique à gauche	138
Figure 27 : Abouchement normal de l'uretère au niveau du trigone vésical	140
Figure 28 : Uretère ectopique extra-mural	140
Figure 29 : Uretère ectopique intra-mural simple	141
Figure 30 : Uretère ectopique avec ouverture urétérale double	142
Figure 31 : Uretère ectopique avec gouttière urétérale	142
Figure 32 : Images échographiques normales de la jonction urétéro-vésicale e	et des uretères.
Figure 33 : Image échographique d'un jet urétéral.	
Figure 34 : Images échographiques de la partie distale d'un uretère ectopique	
Figure 35 : Scanner : coupe transversale au niveau de la jonction sacro-iliaqu	
terminaison normale des uretères dans la vessie	
Figure 36 : Scanner : coupes transversales au niveau de la jonction coxo-fémo	
une ectopie urétérale bilatérale	
Figure 37 : Urétéronéocystostomie	
Figure 38 : Néo-urétérostomie	178
Figure 39 : Correction chirurgicale de l'uretère ectopique intra-mural	179
Figure 40 : Correction des uretères ectopiques intra-muraux par reconstruction	on de l'urètre et
du trigone vésical.	
Figure 41 : Profil de pression urétrale normal le long de l'urètre mâle	210
<u>Liste des radiographies :</u>	
Radiographie 1 : Agénésie totale du rein gauche	56
Radiographie 2 : Reflux vésico-urétéral	59
Radiographie 3 : Urographie intraveineuse chez une chienne présentant une u	
associée à un uretère ectopique	
Radiographie 4 : Duplication urétrale incomplète avec formation de poches d	
chien	
Radiographie 5 : Vessie pelvienne chez un chien mâle	
Radiographie 6 : Vessie pelvienne chez une chienne	

Radiographie 7 : Vaginocystographie associée à une pneumocystographie chez une cha	te
après l'opération d'excision du col vésical	82
Radiographie 8 : Vagino-urétrographie chez une chatte après l'opération de reconstruc	tion
du col vésical par rabats	84
Radiographie 9 : Fistules urétro-rectale, urétro-périnéale et fusion vertébrale chez un c	hien
mâle	89
Radiographie 10 : Urétrographie rétrograde chez un chien atteint de fistule urétro-recta	le. 91
Radiographie 11 : Vaginographie rétrograde chez une chienne présentant un septum va	ginal.
	94
Radiographie 12 : Urétrographie rétrograde réalisée 30 minutes après l'urographie inti	ra-
veineuse sur un animal pseudohermaphrodite femelle	102
Radiographie 13 : Vertèbre de transition lombo-sacrée.	111
Radiographie 14 : Hémi-vertèbres thoraciques	112
Radiographie 15 : Fusion vertébrale de deux vertèbres lombaires	114
Radiographie 16 : Malformation de la dent de l'axis et de l'atlas	115
Radiographie 17 : Exostose ostéocartilagineuse	118
Radiographie 18 : Spina bifida	119
Radiographie 19 : Spina bifida, vue de face	122
Radiographie 20 : Syndrome d'étirement de la moelle épinière observé grâce à une	
myélographie	123
Radiographie 21 : Myélographie 4 mois après réparation d'un myéloméningocèle attach	ıé à
la реаи	124
Radiographie 22 : Agénésie caudale chez une chienne Pékinois	128
Radiographie 23 : Image radiographique normale de la jonction urétéro-vésicale	152
Radiographie 24 : Uretère ectopique bilatéral observé sur une urographie intraveineuse	152
Radiographie 25 : Uretère ectopique extra-mural visible sur une urographie intraveine	ıse.
	153
Radiographie 26 : Uretère ectopique intra-mural simple visualisé suite à une urétrograp	ohie
rétrograde chez un chien mâle	155
Radiographie 27 : Uretère ectopique visualisé suite à une vaginocystographie rétrograd	le
chez une chienne	156
Radiographie 28 : Cystographie double contraste chez un chien normal	205
Radiographie 29: Urétrographie chez un chat mâle normal	207
Radiographie 30 : Vagino-urétrographie rétrograde chez une chienne normale	208

Liste des photos :

Photo 1 : Mise en place des sutures solidarisant la paroi vaginale au tendon prépubie	n 80
Photo 2 : Technique de reconstruction urétrale par excision du col vésical	82
Photo 3 : Technique chirurgicale de reconstruction du col vésical par rabats	83
Photo 4 : Vue ventrale d'un animal pseudohermaphrodite femelle	101
Photo 5 : Cathétérisation du « micro-pénis » chez un chien pseudohermaphrodite fem	elle. 102
Photo 6 : Appareil génital externe d'un pseudohermaphrodite mâle	104
Photo 7 : Appareil génital externe d'un chat pseudohermaphrodite mâle	105
Photo 8 : Tractus génital interne d'un pseudohermaphrodite mâle	105
Photo 9: Changement d'implantation des poils en regard de la spina bifida	121
Photo 10 : Images endoscopiques d'abouchement des uretères dans l'urètre	161
Photo 11 : Mise en place de fils de traction sur la vessie	211
Photo 12 : Cystorraphie en un plan simple appositionnel	213
Liste des tableaux : Tableau 1 : Symptômes observés en fonction de la localisation de la lésion sur la moe	elle
épinièreé	129
Tableau 2 : Comparaison des différentes méthodes diagnostiques de l'ectopie urétéra	le 166
Tableau 3 : Résultats d'une étude d'urétroprofilométrie sur 9 chiens avec ectopie uré	térale.
	169
<u>Liste des annexes :</u>	
Annexe 1 : L'urographie intraveineuse	203
Annexe2 : La cystographie	205
Annexe3 : L'urétrographie rétrograde	207
Annexe4 : Epreuves urodynamiques	209
Annexe5 : Sutures du bas appareil urinaire	211
Annexe 6 : Diagnostic différentiel de l'incontinence urinaire	215

LISTE DES ABREVIATIONS

AINS: anti-inflammatoire non stéroïdien C : vertèbre cervicale ECBU: examen cytobactériologique urinaire **IM**: intramusculaire ITU: infection du tractus urinaire **IV**: intraveineux, intraveineuse L : vertèbre lombaire LCR: liquide céphalo-rachidien **MNC**: motoneurone central MNP: motoneurone périphérique **PO**: per os S: vertèbre sacrée T : vertèbre thoracique

UIV: urographie intraveineuse

Introduction

L'incontinence urinaire est la perte du contrôle volontaire de la miction. La persistance du canal de l'ouraque, qui conduit à une fuite d'urine par l'ombilic sera néanmoins étudiée également. Nous traiterons de l'incontinence urinaire du jeune, chez qui l'affection est présente depuis la naissance. Cependant, l'insuffisance de commémoratifs et la difficulté d'évaluer la qualité des mictions chez le tout jeune animal nous conduisent à y inclure tous les animaux incontinents âgés de quelques mois, en excluant les origines traumatiques et les anomalies comportementales. Il est essentiel de questionner précisément les propriétaires afin de différencier la pollakiurie, la dysurie ou la polyurie de l'incontinence réelle.

L'incontinence urinaire peut atteindre le chien comme le chat. Chez ce dernier elle est cependant moins fréquente et beaucoup moins documentée. Par ailleurs, les femelles sont beaucoup plus touchées que les mâles.

On distingue l'incontinence non neurogène, liée à des malformations de l'appareil uro-génital, de l'incontinence neurogène, liée à des anomalies d'innervation de l'appareil urinaire et résultant de malformations vertébrales.

Chez le chien les causes d'incontinence les plus fréquentes sont l'ectopie urétérale devant l'incompétence du sphincter urétral. L'hypoplasie vésicale, l'intersexualité, la persistance du canal de l'ouraque et les malformations neurologiques congénitales arrivent ensuite. Chez le chat, l'ectopie urétérale et l'incompétence sphinctérienne urétrale sont essentiellement rencontrées.

Dans une première partie, nous rappellerons le développement embryonnaire de l'appareil urinaire ainsi que la physiologie de la miction. La définition, la clinique, le diagnostic et le traitement des différentes causes d'incontinence urinaire seront abordés ensuite. La dernière partie sera consacrée à l'étude de la principale cause d'incontinence urinaire chez les carnivores domestiques, l'ectopie urétérale.

CHAPITRE 1: DEVELOPPEMENT EMBRYONNAIRE DE L'APPAREIL URINAIRE ET PHYSIOLOGIE DE LA MICTION

I- EMBRYOLOGIE: MISE EN PLACE DE L'APPAREIL URINAIRE

L'appareil urinaire groupe les organes qui assurent l'élaboration et l'excrétion de l'urine. Il comprend une **partie glandulaire** constituée par les deux reins et des **voies d'excrétion**, dites voies urinaires.

La formation du système urinaire dépend du développement coordonné des différents tissus embryonnaires [60].

A- Les reins

Les reins sont des glandes parenchymateuses tubulaires mixtes : leur unité anatomique et fonctionnelle est le néphron ; ils possèdent des fonctions endocrine et exocrine.

1- Développement embryonnaire

L'édification de l'appareil urinaire passe chez l'embryon des Mammifères par trois grandes périodes, de durée très inégale, qui récapitulent en quelque sorte son évolution dans la série des Vertébrés. Un **pronéphros** fugace est le rappel d'un rein primitif, il est suivi par un **mésonéphros** lui-même remplacé à son tour par le **métanéphros**, rein définitif dont les voies d'excrétion sont complétées par le développement de la **vessie** et la différentiation du **sinus uro-génital** [7].

Ces trois types de reins sont constitués d'un assemblage d'unités fonctionnelles microscopiques appelées **néphrons**. Ceux-ci sont composés d'un **glomérule** qui filtre les constituants du plasma et d'un **tube urinaire** tortueux qui modifie et évacue le liquide excrété. Au fur et à mesure de l'évolution, le nombre, le degré de perfectionnement et les connexions distales des tubes évoluent ^[7].

a- Pronéphros

Le pronéphros se développe dans la $2^{\grave{e}^{me}}$ semaine, à partir du mésoderme intermédiaire, situé entre le mésoderme paracordal dont dérivent les somites et celui de la lame latérale, qui fournit les parois du cœlome [7].

En regard des somites de la future région cervicale, le mésoderme intermédiaire subit une segmentation qui produit les **néphrotomes**.

Ce rein cervical a une structure très primitive : les **néphrons** s'ouvrent dans la cavité générale par l'intermédiaire de **tubules pronéphriques** [7] :

- Près de leur extrémité cœlomique, ces tubes entrent en contact chacun avec un **glomérule** formé par un rameau collatéral de l'aorte.
- L'extrémité opposée, latérale, s'unit à celle des tubes voisins pour former un conduit évacuateur commun, le **conduit pronéphrique**.

A *trois semaines*, le pronéphros régresse et disparaît sans avoir été fonctionnel, mais le conduit pronéphrique continue à s'allonger en direction caudale, jusqu'à rejoindre la partie préterminale de l'intestin (cloaque) dans laquelle il finit par s'ouvrir ^[7].

b- Mésonéphros

Le mésonéphros se développe dans la $3^{\hat{e}me}$ semaine sous l'action inductrice du conduit pronéphrique [7].

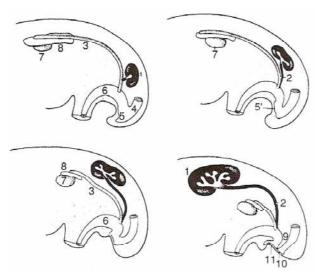
Il est formé de tubules mésonéphriques :

- L'extrémité médiale reste close et s'élargit en une **capsule** creuse qui enserre un **glomérule** : l'ensemble forme un **corpuscule mésonéphrique**.
- L'extrémité opposée du tubule s'ouvre dans le canal collecteur commun, le **conduit mésonéphrique**, continuation caudale du conduit pronéphrique.

Le glomérule et son tubule forment un néphron mésonéphrique.

Le mésonéphros est plus évolué que le pronéphros : ses néphrons sont plus nombreux, il n'y a pas de segments métamérisés et il est temporairement fonctionnel au stade embryonnaire chez le chat.

Le mésonéphros n'a qu'une brève existence chez les carnivores domestiques. Son extrémité crâniale est déjà en cours d'involution lorsque s'édifie la partie caudale. Cette dernière dégénère à son tour au début de la période fœtale (cf. Figure 1) [7].


Le conduit mésonéphrique persiste chez le mâle sous la forme du **conduit déférent** ^[60]. La paroi cœlomique s'épaissit au bord médial du mésonéphros pour former la **crête gonadique**; intercalé entre la gonade et le conduit mésonéphrique, le reliquat mésonéphrique sera l'**épididyme** chez le mâle.

Chez la femelle, le conduit mésonéphrique participe à la formation du vagin [60].

c- Métanéphros

Le métanéphros est le rein lombo-sacré définitif. Il se forme vers *trois semaines* et procède de deux ébauches distinctes : l'une est tubulaire et provient d'un bourgeon du conduit mésonéphrique, elle produira les voies urinaires supérieures et la médulla. L'autre provient du blastème métanéphrogène et forme les néphrons qui formeront le cortex (cf. Figure 1).

Les néphrons sont organisés de façon comparable à ceux du mésonéphros mais ils sont beaucoup plus nombreux, de 200 000 à 400 000 chez les carnivores domestiques ^[7].

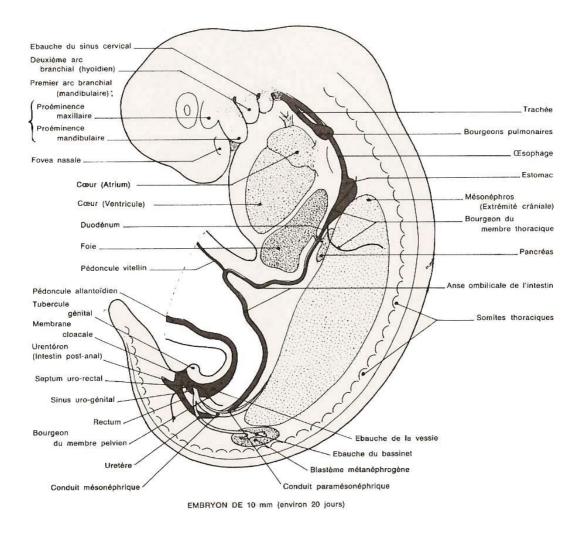
Figure 1 : <u>Développement du métanéphros à partir du blastème métanéphrogène et du bourgeon urétérique*</u>.

 $\begin{array}{c} \textbf{1}: \text{m\'etan\'ephros}, \textbf{2}: \text{bourgeon ur\'et\'erique}, \textbf{3}: \text{conduit m\'eson\'ephrique}, \textbf{4}: \text{rectum}, \textbf{5}: \text{cloaque}, \\ \textbf{6}: \text{sinus uro-g\'enital}, \textbf{7}: \text{gonade}, \textbf{8}: \text{m\'eson\'ephros}, \textbf{9}: \text{septum uro-g\'enital}, \\ \textbf{10}: \text{membrane anale}, \textbf{11}: \text{membrane uro-g\'enitale}. \\ \text{Dyce et al} \ ^{[26]}. \end{array}$

_

^{*} Dans la littérature, on rencontre les deux adjectifs « urétérique » et « urétéral ». Ils seront sont donc employés indifféremment dans le texte.

Le <u>bourgeon urétérique</u> est émis par le conduit mésonéphrique près de sa terminaison, c'est le futur uretère. Il s'allonge en direction crâniale, au bord médial du mésonéphros jusqu'à pénétrer dans la masse du tissu métanéphrogène (cf. Figure 1 et Figure 2). Il se creuse alors d'une cavité et devient un **conduit urétérique**, son extrémité crâniale se renfle en une ampoule qui forme le **bassinet primitif**. Celui-ci émet alors des diverticules qui plongent dans le blastème métanéphrogène formant des **calices primitifs** qui se ramifient à leur tour en **tubes collecteurs** jusqu'au 15^{ème} ordre de division.


Les premières divisions (jusqu'au 7^{ème} ordre) disparaissent dans un processus de remodelage : elles sont absorbées par le bassinet, qui reçoit les **conduits papillaires** (8^{ème} ordre). Les **tubes collecteurs** représentent les divisions du 9^{ème} au 14^{ème} ordre et les **tubes arqués**, segments d'union avec les néphrons, les divisions du 15^{ème} ordre [7].

Le <u>blastème métanéphrogène</u> est produit par le mésoderme intermédiaire correspondant aux segments de la future région lombaire et du début de la région sacrale.

Les tubules collecteurs et les conduits papillaires occupent la zone interne du parenchyme rénal, ou **médulla**. Ils y sont regroupés en ensembles coniques convergents, les pyramides rénales ^[7].

Les néphrons occupent la zone externe du parenchyme, ou **cortex rénal** ; à chaque pyramide rénale correspond un lobe cortical.

Chez les carnivores domestiques, le rôle tenu par la muqueuse orale dans la régulation thermique et les pertes d'eau subséquentes, la finesse de la peau, la taille réduite et le rapport surface/volume élevé contraignent l'organisme à économiser l'eau. Le gradient cortico-papillaire est donc important et la lobation embryonnaire des reins disparaît [71].

Figure 2 : <u>Développement de l'appareil urinaire</u>.

Barone [7].

2- Anatomie définitive

Développé dans la paroi du cœlome, le rein définitif est toujours en position **extra- péritonéale**. Sa topographie présente en outre une évolution remarquable : apparu en région lombo-sacrée, le rein migre ensuite crânialement, pour se placer en définitive dans la **région thoraco-lombaire**. Cette migration est inégale pour les deux reins, le droit est en position plus crâniale (cf. Figure 3) [7].

Le rein des carnivores a une forme de haricot. Sa face médiale, concave, reçoit les vaisseaux et les nerfs et donne issue à l'uretère au niveau du hile. Le sinus rénal est la cavité qui s'ouvre au bord médial du rein, au niveau du hile. Il est entouré par le parenchyme rénal. Ce dernier présente deux zones concentriques de teinte et de texture différentes, la médulla au

centre et le cortex à la périphérie. La *médulla* est parcourue de stries radiaires qui correspondent aux anses des néphrons, aux tubes collecteurs, aux vaisseaux interlobaires et aux vasa recta. Le *cortex*, plus sombre, est composé d'une partie radiée formée par les anses de Henlé et les tubes droits et d'une partie contournée qui contient les tubes contournés et les corpuscules rénaux ^[7;71].

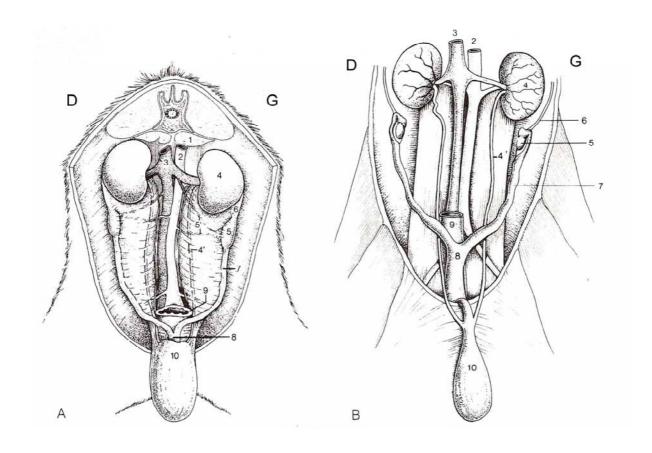


Figure 3 : Vue ventrale de l'abdomen caudale d'une chienne (A) et d'une chatte (B).

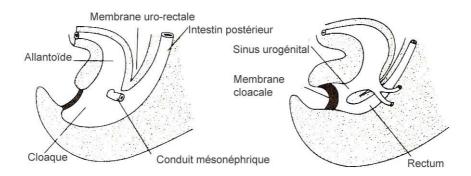
D : droite, G : gauche, 1 : muscles psoas, 2 : aorte, 3 : veine cave caudale, 4 : rein, 4' : uretère, 5 : ovaire, 5' : vaisseaux ovariens, 6 : ligament suspenseur de l'ovaire, 7 : corne utérine, 8 : corps de l'utérus, 9 : rectum, 10 : vessie basculée caudalement.

D'après Dyce et al [26].

B- Les voies urinaires

Les voies urinaires sont paires au départ des reins et impaires distalement. Elles ont une double origine, endodermique et mésodermique.

1- Développement embryonnaire (cf. Figure 6)


On a vu précédemment, dans le développement du métanéphros, comment, de chaque coté, l'uretère naît d'une évagination de la partie préterminale du conduit mésonéphrique et produit à son tour le bassinet [7].

Le conduit urétérique s'ouvre caudalement dans le cloaque, partie terminale de l'intestin.

La paroi ventrale du cloaque est endodermique et s'adosse à l'ectoderme pour former la **membrane cloacale**. Crânialement, la cavité intestinale se continue dans celle du récessus allantoïdien. Le mésoderme placé entre l'allantoïde et l'intestin caudal s'organise en une lame transversale qui soulève l'endoderme adjacent et forme le **septum uro-rectal**. Celui-ci s'étend alors en direction caudale jusqu'à atteindre le bord crânial de la membrane cloacale (cf. Figure 4) [60].

A ce niveau, la paroi du corps forme le **tubercule génital** vers l'extérieur alors que l'endoderme forme **l'éminence endodermique cloacale** qui fait saillie dans le cloaque et sur laquelle vient se souder le septum uro-rectal. Le cloaque est alors divisée en deux parties : l'une dorsale constitue **l'ébauche du rectum** tandis que l'autre, ventrale, est le **sinus uro-génital primitif** [7].

La partie caudale de l'éminence endodermique forme avec le septum uro-rectal la première **ébauche du périnée**. Elle se résorbe dans sa partie crâniale et l'assise cellulaire restante forme avec l'ectoderme correspondant la **membrane uro-génitale**. Cette membrane ainsi que la membrane cloacale devenue **membrane anale** se résorbent laissant communiquer chacune de deux cavités avec l'extérieur. Ainsi, le sinus uro-génital s'ouvre à l'extérieur par l'**ostium uro-génital** tandis que le rectum s'ouvre par le **canal anal** et l'**anus** [7].

Figure 4 : <u>Séparation des appareils urogénital et digestif lors de l'embryogenèse</u>.

D'après Goulden et al [35].

La partie du conduit allantoïdien située entre le débouché des conduits mésonéphriques et l'ombilic constitue le **canal vésico-urétral**. Celui-ci est fixé ventralement par un méso d'abord très court et épais, il est continu crânialement avec le conduit allantoïdien, et s'allonge en même temps que se constitue la partie infra-ombilicale de l'abdomen.

- Sa partie crâniale s'étire en un conduit, l'**ouraque**, qui se prolonge au delà de l'anneau ombilical par le conduit allantoïdien.
 - Sa partie moyenne se dilate et produit la **vessie** [60].

La vessie et l'ouraque sont longés de chaque coté par les artères ombilicales, qui leur sont attachées chacune par un méso.

A la naissance, l'ouraque se ferme au niveau de l'ombilic et la vessie se retire en direction du bassin en entraînant les artères ombilicales oblitérées et leurs ligaments, de même que le vestige de l'ouraque et son méso. Ainsi se constitue l'ensemble des ligaments de la vessie [7].

A l'extrémité caudale de la vessie, la paroi absorbe la partie terminale des conduits mésonéphriques. Par conséquent, les uretères se séparent très vite de l'embouchure de ces conduits et leur embouchure se trouve reportée plus crânialement (cf. Figure 5). La partie de la paroi vésicale délimitée par les ostiums des uretères et l'ostium interne de l'urètre provient donc des conduits mésonéphriques et est appelée **trigone vésical** [7].

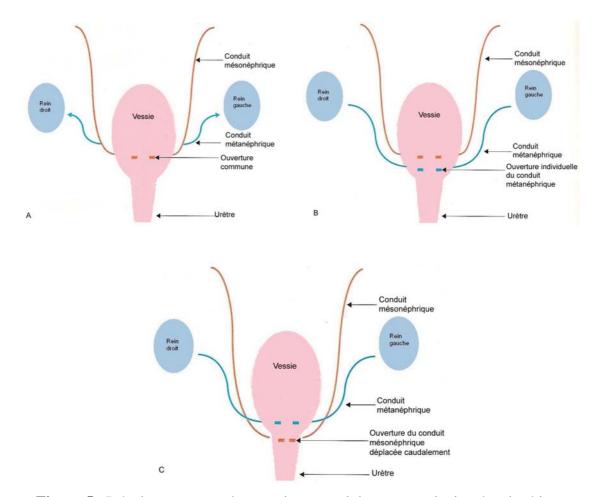
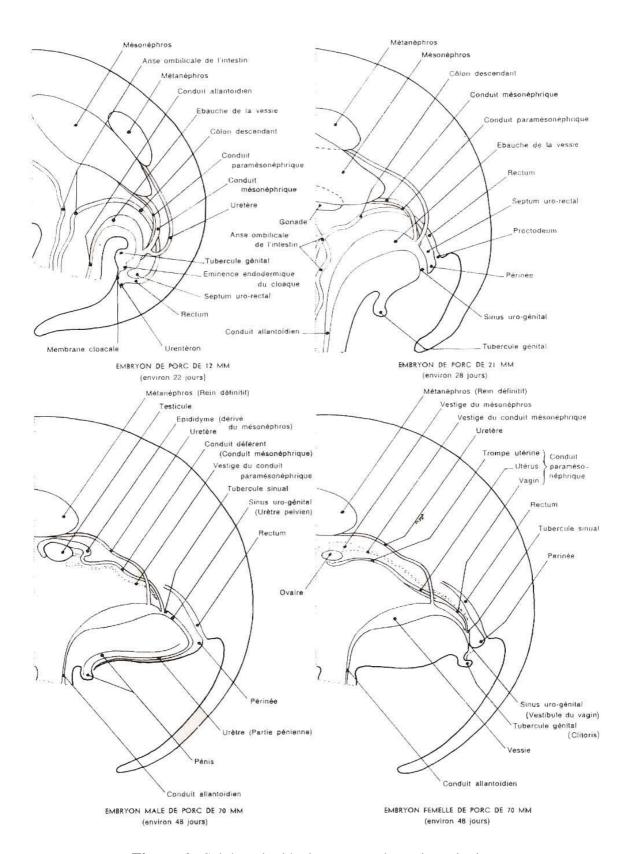


Figure 5 : <u>Développement embryonnaire normal du tractus urinaire chez le chien</u>.


A : les conduits mésonéphrique et métanéphrique ont un conduit excréteur et une ouverture en commun au moment de la formation de la vessie.

B : lorsque la vessie se développe, le conduit commun se résorbe et les conduits mésonéphrique et métanéphrique acquièrent des ouvertures individuelles.

C : le conduit mésonéphrique est déplacé caudalement et s'ouvre sur la paroi dorsale de l'urètre tandis que l'ouverture du conduit métanéphrique reste dans la vessie.

D'après Sutherland-Smith et al [98].

La partie du canal vésical située plus caudalement constitue **l'urètre urinaire**, par lequel la vessie communique avec le sinus uro-génital définitif. La limite entre l'urètre urinaire et ce sinus est marquée chez le mâle par la terminaison des conduits mésonéphriques devenus conduits déférents et chez la femelle par la terminaison des conduits paramésonéphriques, qui forme la partie crâniale du vagin ^[7].

Figure 6 : Schéma du développement des voies urinaires. Barone [7].

2- Anatomie définitive

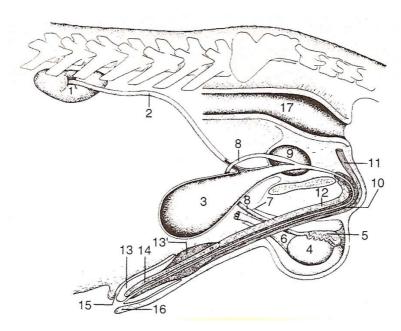


Figure 7 : Appareil uro-génital du chien mâle, coupe sagittale.

1 : rein droit, 2 : uretère, 3 : vessie, 4 : testicules, 5 : épididyme, 6 : cordon spermatique, 7 : anneau inguinal, 8 : canal déférent, 9 : prostate, 10 : corps spongieux, 11 : muscle rétracteur du pénis, 12 : corps caverneux, 13 : gland, 14 : os pénien, 15 : cavité préputiale, 16 : prépuce, 17 : rectum.

Dyce et al [26].

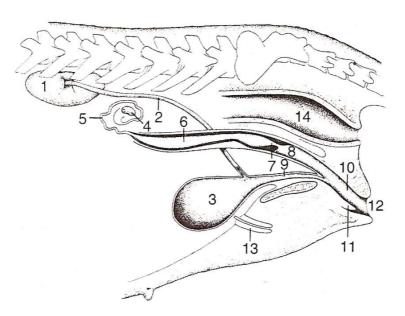


Figure 8 : Appareil uro-génital de la chienne, coupe sagittale.

1 : rein droit, 2 : uretère, 3 : vessie, 4 : ovaires, 5 : oviducte, 6 : corne utérine, 7 : cervix, 8 : vagin, 9 : urètre, 10 : vestibule, 11 : clitoris, 12 : vulve, 13 : anneau inguinal, 14 : rectum. Dyce et al $^{[26]}$.

a- Le bassinet [71]

Le bassinet est la portion proximale dilatée des voies urinaires, incorporée dans le sinus rénal. Les récessus du bassinet rendent compte de la lobation primitive du rein.

La *muqueuse* possède un épithélium de transition stratifié pavimenteux, extensible, qui devient prismatique sur les papilles.

La *musculeuse* comprend une couche circulaire et une longitudinale qui forment un lacis parcouru par des fibres élastiques chargées du déploiement du bassinet après sa contraction. La couche circulaire se condense à la sortie du bassinet en un sphincter qui se relâche pour évacuer l'urine vers l'uretère.

L'adventice, peu importante, est doublée par le tissu adipeux du sinus rénal. Le bassinet possède une innervation sensible qui rend douloureuse sa distension exagérée.

b- Les uretères [71]

L'uretère conduit l'urine du bassinet à la vessie. Il fait 10 à 20 cm de longueur et on lui reconnaît trois parties (cf. Figure 7 et Figure 8) :

- ◆ Une partie abdominale, où il parcourt le plafond abdominal entre les muscles psoas et le péritoine.
- - *♦ Une partie vésicale*, où il entre dans la paroi de la partie dorsale de la vessie.

Dans le **pli génital**, son trajet varie avec le sexe :

- Chez le mâle, l'uretère croise dorsalement le conduit déférent, puis latéralement la glande vésiculaire, pour s'engager dans la base du pli génital.
- Chez la femelle, l'uretère passe dans la racine du ligament large de l'utérus, où il croise médialement les vaisseaux utérins, puis il chemine entre l'extrémité utérine du vagin et la face dorsale de la vessie.

L'uretère traverse très obliquement la paroi vésicale et possède un trajet sous-muqueux qui soulève la **colonne urétérique**. Cette position détermine la fermeture de l'uretère lorsque la pression vésicale augmente, et interdit le reflux de l'urine (cf. Figure 9).

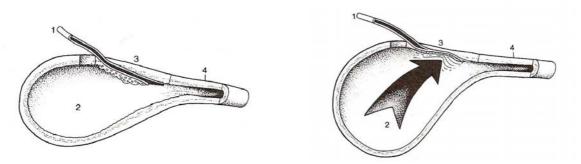


Figure 9 : <u>Jonction urétéro-vésicale.</u>
1 : uretère, 2 : lumière vésicale, 3 : paroi vésicale, 4 : col vésical.

Dyce et al [26].

La muqueuse comporte un épithélium de transition stratifié et une lame propre élastique.

La *musculeuse* se compose d'une couche longitudinale interne peu importante, d'une couche circulaire et, dans le tiers caudal, d'une couche longitudinale externe, la seule développée dans la partie vésicale, où elle forme une « boucle d'ouverture » de l'ostium urétérique (la gaine urétérique). Les myocytes lisses sont animés par des ondes péristaltiques initiées à la jonction pyélo-urétérique.

L'adventice contient des vaisseaux et des nerfs, et permet des mouvements relatifs.

c- La vessie [71]

La vessie urinaire est un réservoir impair, extensible et contractile. Elle reçoit et met en réserve l'urine, puis la chasse lorsque sa distension et/ou sa pression interne atteignent un certain seuil.

La vessie est un sac de volume et de consistance variable selon son état de réplétion : sa longueur et son diamètre varient entre 2 et 18 cm pour un chien de 12 kg. L'apex de la vessie peut ainsi s'avancer jusqu'à la région ombilicale lorsqu'elle est pleine.

Le corps de la vessie est relié aux parois pelviennes par des plis de péritoine:

- Le **ligament médian**, qui s'étend en direction de l'ombilic et dont le bord libre porte parfois encore le vestige fibreux de l'ouraque.
- Le **ligament latéral**, ourlé par le ligament rond de la vessie, vestige fibreux de l'artère ombilicale, et source de l'artère vésicale crâniale.

L'extrémité caudale rétrécie, le col de la vessie, aboutit à l'urètre.

Dorsalement, deux colonnes urétériques aboutissent aux orifices des uretères. Les plis urétériques rejoignent ensuite l'orifice interne de l'urètre, ils limitent latéralement le **trigone vésical** (cf. Figure 10).

Le trigone vésical, délimité par les orifices des uretères et de l'urètre, est la partie fixe de la vessie. Chez les carnivores, la vessie est toujours abdominale, le col étant au bord crânial du pubis.

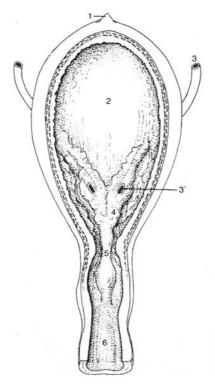


Figure 10 : <u>Vue intérieure de la vessie, paroi dorsale.</u>

1 : cicatrice du canal de l'ouraque, 2 : vessie, 3 : uretère, 3' : orifice urétéral,

4 : trigone vésical, 5 : crête urétrale, 6 : urètre.

Dyce et al [26].

La muqueuse possède un épithélium de transition stratifié, très extensible.

La *sous-muqueuse* est lâche partout, sauf dans le trigone vésical où la muqueuse est adhérente et lisse.

La *musculeuse* est formée de faisceaux de fibres lisses disposées en couches longitudinales, externe et interne, et circulaire intermédiaire. Vers le col, les fibres prennent des directions obliques : leur contraction a alors un effet dilatateur. Chez le chien il n'y a pas de renforts musculaires au niveau de l'orifice urétral et la notion de « sphincter du col » est controversée. Il n'y a pas de sphincter anatomique à proprement parler mais plutôt un sphincter physiologique [19; 96].

La séreuse est remplacée par une adventice dans l'espace rétro-péritonéal.

d-L'urètre [71]

L'urêtre évacue l'urine depuis l'ostium urétral interne de la vessie jusqu'à l'ostium urétral externe du méat urinaire. Sa longueur et son organisation dépendent du sexe :

L'urètre féminin:

Il est court (2 à 10 cm) et exclusivement urinaire. Son calibre, de quelques millimètres, est dilatable, permet les sondages vésicaux et laisse passer les calculs qui ont pu s'y engager (cf. Figure 8).

La *muqueuse* est épaisse et plissée longitudinalement. La *propria* est riche en fibres élastiques.

La sous-muqueuse est très vascularisée et riche en lymphonodules.

La *musculeuse* présente, comme la vessie, deux couches longitudinales externe et interne et une couche circulaire moyenne. Le **muscle urétral**, strié, se développe près de l'orifice externe de l'urètre.

Une tunique adventice est présente.

L'urètre masculin:

On peut lui distinguer deux parties, une pelvienne et une pénienne (cf. Figure 7).

- La **partie pelvienne** comprend une partie préprostatique virtuelle, exclusivement urinaire et une partie prostatique qui traverse la prostate.
- La **partie spongieuse**, ou **pénienne**, s'étend de l'isthme de l'urètre à l'orifice externe de l'urètre. Sa direction est ventro-crâniale chez le chien, caudale au repos chez le chat. L'urètre est dilatable partout sauf au niveau de l'os pénien.

La *muqueuse* est plissée et creusée dans sa partie pelvienne de lacunes où débouchent les glandes urétrales.

La *sous-muqueuse* forme la couche spongieuse de l'urètre pelvien, elle se continue par le corps spongieux du pénis et du gland.

La *musculeuse* présente une couche longitudinale interne lisse noradrénergique et une couche circulaire externe striée, formant le **muscle urétral**. A la face externe du bulbe du pénis, elle forme le **muscle bulbo-spongieux**.

II- PHYSIOLOGIE DE LA MICTION

A- Les structures impliquées

1- Les muscles

Le **détrusor**, couche musculeuse de la paroi vésicale, est formé de trois couches musculaires lisses très intriquées. Les couches externe et interne sont longitudinales tandis que la couche moyenne est circulaire ^[19].

La jonction vessie-urètre est établie par la présence du **col vésical**, dont la structure est indiscernable du détrusor mais dont le rôle physiologique est fondamental puisqu'il joue le rôle de sphincter. Sa musculature lisse se prolonge dans l'urètre [19].

L'**urètre** est composé d'une couche musculaire externe striée qui forme le sphincter externe de l'urètre et d'une couche musculaire lisse, prolongement de la musculeuse vésicale.

- Le *sphincter urétral externe*, ou sphincter strié, entoure l'urètre membraneux chez le mâle ; chez la femelle, ce sphincter est présent dans le tiers moyen de l'urètre lors de la traversée du plancher pelvien ^[19; 81].
- Le sphincter lisse, ou *sphincter interne*, est composé de deux couches musculaires, l'une longitudinale ou oblique, l'autre circulaire constitue le véritable sphincter interne tandis que la couche oblique sert probablement à l'ouvrir pendant la miction. Chez le chien, les couches circulaires et obliques sont très intriquées et leur rôle respectif pas encore complètement élucidé ^[19].

En dehors d'un contrôle nerveux, le tonus urétral semble hormonodépendant, et modulé, en particulier, par la concentration locale des hormones sexuelles ^[19].

Ainsi, chez le chien, la pression urétrale n'est pas dépendante d'un sphincter défini anatomiquement mais d'une interaction de plusieurs mécanismes physiologiques ^[5].

2- Les centres nerveux

L'activité vésico-sphinctérienne est contrôlée et coordonnée par des centres médullaires, protubérantiels, cérébelleux et corticaux [19; 70].

Les **centres médullaires** règlent localement l'activité vésico-sphinctérienne. Chez le chiot et le chaton, la miction est un processus réflexe mettant en jeu exclusivement l'activité médullaire ^[19; 70]. Ce processus réflexe est également important lors d'affection de la moelle épinière ^[70].

Les **centres protubérantiels** répondent à la distension et à la douleur par une activité coordonnée de la vessie et des sphincters assurant l'exonération [19].

Le centre protubérantiel est lui-même sous la dépendance de **centres diencéphaliques**, **corticaux** (face interne du lobe frontal) **et cérébelleux** qui exercent sur celui-ci des activités tantôt inhibitrices, tantôt facilitatrices ^[19].

3- Les nerfs (cf. Figure 11)

a- L'innervation motrice

Elle est composée d'une innervation végétative et d'une innervation somatique.

- L'innervation végétative est composée de fibres orthosympathiques et de fibres parasympathiques.
 - L'innervation somatique est composée de fibres parasympathiques.

Les fibres parasympathiques :

Les *fibres neurovégétatives* sont issues des segments médullaires sacrés entre S1 et S3 et constituent les **nerfs pelviens**. Ils prennent relais dans les ganglions pelviens et à l'intérieur même de la paroi vésicale et innervent la vessie au niveau de récepteurs cholinergiques ^[19; 36]. Le neuromédiateur est l'acétylcholine ou un médiateur purinergique, probablement l'adénosine triphosphate ^[19].

La stimulation des nerfs pelviens déclenche la contraction du détrusor et l'inhibition de l'activité du sympathique ce qui provoque la vidange vésicale. A ce titre, ces nerfs sont donc appelés « nerfs de la vidange vésicale » [19; 36; 81].

Les *fibres somatiques* sont issues de centres médullaires sacrés localisés entre S1 et S2 avec des contribution provenant des centres L7 et S3 ^[19; 71]. Ces fibres forment les **nerfs honteux internes** qui innervent le sphincter urétral strié, sous contrôle volontaire, et les muscles de la région périnéale dont le sphincter anal, la vulve et le prépuce ^[36; 81].

Leur stimulation renforce la continence vésicale.

Les fibres orthosympathiques:

Elles sont issues de centres médullaires situés entre L1 et L4 chez le chien, L2 et L5 chez le chat. Les **nerfs hypogastriques**, après relais dans le ganglion mésentérique caudal, innervent la vessie au niveau de récepteurs β_2 - mimétiques et le muscle lisse urétral au niveau de récepteurs α_1 -mimétiques [19; 70; 71; 81]. Le neuromédiateur est la noradrénaline [19].

Une stimulation sympathique a pour effet principalement la relaxation du détrusor mais aussi la fermeture du sphincter interne au niveau du col vésical [71; 81].

Les nerfs hypogastriques prennent également relais dans le ganglion pelvien, parasympathique, pour inhiber l'activité parasympathique pendant la phase de remplissage^[19]. L'ensemble de ces actions font des nerfs hypogastriques les « nerfs du remplissage vésical »^[19].

Enfin, il semble que la réponse α -adrénergique soit dépendante de la concentration locale en œstrogènes chez la femelle, en testostérone chez le mâle, tandis que la réponse β -adrénergique serait renforcée en présence de progestérone [19].

b- L'innervation sensitive

Les parois vésicale et urétrale contiennent deux types de récepteurs :

- des récepteurs proprioceptifs musculaires sensibles à la contraction et à la tension
- des *récepteurs extéroceptif*s sous-muqueux sensibles à la douleur et à la température pour la vessie, à la température et au toucher pour l'urètre ^[19].

Les **influx sensitifs d'origine vésicale** sont véhiculés vers la moelle lombaire et sacrée par les nerfs hypogastriques et pelviens.

Les **influx urétraux** sont véhiculés par les nerfs honteux internes vers la moelle sacrée ^[19; 71].

c- L'innervation intra-pariétale [19]

Toute l'innervation vésicale somatique, sympathique et parasympathique passe par le plexus hypogastrique.

Différents types de récepteurs peuvent être identifiés :

Au niveau du détrusor, on trouve des récepteurs cholinergiques de type muscarinique.

Au niveau de **l'urètre** et du **col de la vessie**, on trouve des récepteurs α-adrénergiques.

Au niveau du **sphincter strié urétral**, ce sont essentiellement des récepteurs cholinergiques qui sont présents mais on trouve aussi des récepteurs α-adrénergiques.

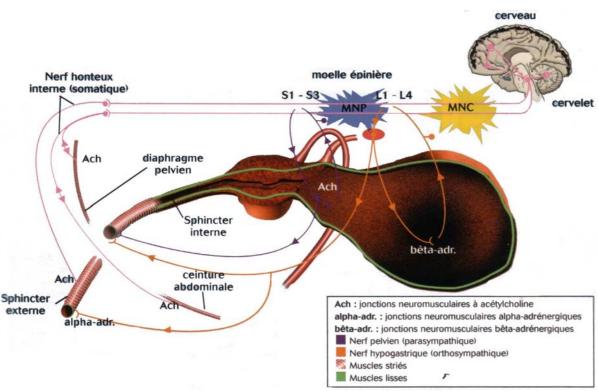


Figure 11 : <u>Physiologie de la miction</u>. Girard [32].

B- Mise en jeu de l'appareil vésico-sphinctérien

1- Le cycle de fonctionnement vésico-urétral

La continence urinaire est la faculté de contrôler volontairement la rétention de l'urine stockée dans la vessie pendant la phase intermictionnelle [19].

Le cycle de fonctionnement vésico-urétral comprend plusieurs phases :

- l'écoulement de l'urine des urètres vers la vessie,
- une phase de **continence passive** : la distension vésicale permet le remplissage de la vessie sans augmentation de la pression intravésicale,
- une phase de **continence active** : le tonus du sphincter urétral augmente en même temps que la pression intravésicale,
- au-delà d'un certain seuil, des neurones afférents transmettent un influx à la moelle et au cerveau et l'animal perçoit le besoin d'uriner,
- le cerveau renvoie un réponse adaptée : **l'initiation de la miction**, sous contrôle volontaire. Les influx efférents descendent par la moelle épinière et les voies efférentes jusqu'aux muscles abdominaux et au détrusor et initient leur contraction, qui s'associe à un relâchement du col vésical, tandis qu'un reflux spinal lève simultanément le tonus urétral.

2- Remplissage

Pendant la phase de remplissage, la contraction de la vessie est inhibée par le cervelet et les fibres sympathiques [64; 71; 81].

a- Continence passive

Pendant la phase de continence passive, le remplissage vésical s'effectue à pression pratiquement constante, environ 10 cm H2O, grâce à la compliance vésicale [19].

Les sphincters sont fermés, le détrusor se distend progressivement sous l'effet d'une activité sympathique et parasympathique somatique maximale et d'une inhibition du système parasympathique végétatif d'origine centrale [19].

b- Continence active

La phase active survient lorsque le volume vésical dépasse 90 à 150 mL chez le chien de taille moyenne, ce dernier ressent alors le besoin d'uriner [19].

Cette phase est caractérisée par une élévation du tonus du sphincter urétral externe qui renforce la continence sous l'effet d'influx d'origine corticale^[19; 64].

3- Vidange

La vidange vésicale repose sur le synchronisme entre l'ouverture des sphincters et la contraction du détrusor, ainsi que le maintien de cet équilibre pendant toute la durée de la miction [19].

Elle repose sur l'action du système parasympathique [81].

a- Initiation

Lorsque la pression intravésicale atteint 20 cm d'H2O, la sensation de besoin est transmise aux centres supérieurs ^[19]. Il en résulte alors une levée de l'inhibition des centres médullaires dont l'activité automatique se traduit par une contraction du muscle vésical débutant par le trigone (stimulation des nerfs pelviens), une ouverture du col vésical (inhibition des nerfs hypogastriques), un relâchement synergique du sphincter strié (inhibition des nerfs honteux)^[19].

Le déclenchement de la miction peut être modifié par de nombreux facteurs [19].

b- Entretien

Deux mécanismes concourent à entretenir la vidange de la vessie, même si la pression vésicale diminue :

- la mise en jeu de réflexes enchaînés : la distension de l'urètre et le passage de l'urine entraînant la contraction du détrusor et le relâchement du sphincter externe,
- la contraction vésicale qui augmente la sensibilité des récepteurs sensibles à la distension.

A la fin de la miction, un réflexe d'inhibition récurrente permet la cessation de la contraction du détrusor ^[19].

Le volume résiduel, après une vidange normale, est d'environ 0,2 à 0,4 mL/kg chez le chien et le chat [19; 36; 81].

L'incontinence urinaire du jeune chez les carnivores domestiques

CHAPITRE 2: ETIOPATHOGENIE ET THERAPEUTIQUE DES PRINCIPALES CAUSES D'INCONTINENCE CONGENITALE

I- INCONTINENCE NON NEUROGENE: LES ANOMALIES CONGENITALES DE L'APPAREIL URO-GENITAL

Les anomalies congénitales de l'appareil urinaire ne sont pas rares chez les carnivores domestiques. Souvent, les animaux atteints présentent plusieurs malformations associées. Ainsi, lorsqu'un animal est présenté pour un défaut de l'appareil urinaire, il convient de l'examiner précisément afin de détecter d'autres éventuelles anomalies de l'appareil urinaire ou de l'appareil génital [65; 89].

Les examens à mettre en œuvre face à un jeune animal présenté pour incontinence urinaire sont un examen externe complet, un examen vaginal, un examen neurologique, une analyse d'urine et une bactériologie, des radiographies avec produit de contraste, une échographie abdominale ou des épreuves urodynamiques ^[65].

Le traitement est le plus souvent chirurgical, ses indications majeures sont l'apparence esthétique, l'obstruction urinaire partielle ou complète, l'incontinence urinaire ou les problèmes de fertilité [89].

A- Les reins

Les anomalies congénitales rénales n'entraînent pas à elles seules une incontinence urinaire. En revanche, elles accompagnent parfois d'autres anomalies de l'appareil urinaire qui sont la cause de l'incontinence. Ainsi, il n'est pas rare de rencontrer des hypoplasies ou des ectopies rénales associées à des uretères ectopiques.

1- L'ectopie rénale

Définition:

L'ectopie rénale est une modification de la position anatomique du rein.

Epidémiologie et lésions associées :

L'ectopie rénale est une anomalie rare chez les carnivores domestiques. Elle existe chez le chat et le chien, chez les mâles comme chez les femelles ^[57]. Aucune prédisposition raciale n'a été démontrée ^[54].

Elle peut être associée à un uretère ectopique ou à une hypoplasie rénale [57].

Pathogénie:

L'ectopie rénale est due à un défaut de migration du rein vers sa position normale entre la dernière vertèbre thoracique et la 2^{ème} vertèbre lombaire. La migration rénale se produit en même temps que la séparation des uretères de leur origine commune avec le tractus génital. Ainsi, chez la femelle, l'ectopie rénale est parfois associée à un uretère ectopique se terminant dans le vagin ^[57].

L'hypoplasie rénale parfois associée est secondaire à un défaut de vascularisation du rein dû à sa position ectopique ^[57].

Signes cliniques:

Le plus souvent, cette malformation est asymptomatique [57].

En revanche si l'ectopie rénale est associée à un uretère ectopique se terminant dans l'urètre ou dans l'utérus ou le vagin chez la femelle, une incontinence urinaire est présente [57].

Diagnostic:

Le diagnostic peut être établi par la réalisation de radiographies avec et sans préparation (urographie intraveineuse, vagino-urétrographie rétrograde), voire par laparotomie [57].

Traitement:

Le traitement est chirurgical et n'est entrepris que lorsque des symptômes sont présents. Le plus souvent, on réalise une néphrectomie et une ovario-hystérectomie chez les femelles ^[57].

2- L'agénésie rénale

Définition:

L'agénésie rénale est l'absence d'un ou des deux reins, souvent associée à l'absence de l'uretère correspondant [3].

Un cas d'uretère ectopique borgne crânialement a également été décrit [3].

Lésions associées :

Des anomalies du tractus génital sont souvent présentes. On observe alors des uretères ectopiques, une dysplasie rénale, une hypoplasie ou une agénésie de la vessie et des anomalies de l'appareil génital ^[3].

Pathogénie:

Durant l'embryogenèse normale, les reins sont formés à partir du mésoderme intermédiaire originaire de la paroi dorsale du corps du fœtus, donnant naissance à trois structures successives : le pronéphros, le mésonéphros et le métanéphros. Pendant le développement, le pronéphros et le métanéphros deviennent vestigiaux, formant le bourgeon urétérique, qui induit la croissance et la différentiation du métanéphros formant le rein définitif [3; 100].

L'agénésie rénale résulterait de la dégénérescence précoce du bourgeon urétérique qui ne permet donc pas d'induire la croissance du métanéphros [3; 100].

Etant données les interrelations entre le développement du rein et des autres organes de l'appareil uro-génital, la fréquence d'anomalies associées à l'agénésie rénale est importante^[3].

Signes cliniques:

L'agénésie rénale unilatérale est généralement asymptomatique sauf si le rein controlatéral est lésé. On observe alors une augmentation de l'urémie et des signes d'insuffisance rénale [3].

Diagnostic:

Le diagnostic doit permettre de détecter l'agénésie rénale mais aussi de déterminer les lésions associées. L'appareil uro-génital doit être exploré dans sa totalité ^[3].

Le diagnostic repose donc sur la réalisation d'une échographie avec Doppler, d'une urographie intraveineuse (cf. Radiographie 1), d'une vaginographie, d'une pneumocystographie, parfois d'une combinaison de ces procédures [3; 100].

Radiographie 1 : Agénésie totale du rein gauche.

On note la présence d'une hydronéphrose marquée du rein droit et un méga-uretère à droite.

Maï [73].

Traitement:

Le traitement dépend essentiellement des anomalies associées et sera précisé dans les paragraphes correspondants [3].

B- <u>Les uretères</u>

L'anomalie congénitale urétérale la plus fréquente est l'ectopie urétérale. C'est également la cause la plus fréquente d'incontinence urinaire chez les jeunes carnivores domestiques. C'est pour cette raison qu'elle fera l'objet d'un chapitre indépendant. Les autres anomalies urétérales, beaucoup moins fréquentes, sont le méga-uretère congénital, les valvules urétérales congénitales, le reflux vésico-urétéral et l'urétérocèle. Ces anomalies n'entraînent pas systématiquement une incontinence urinaire. Le diagnostic est établi par la réalisation d'une urographie intraveineuse dans la plupart des cas. Le traitement, s'il existe, est chirurgical.

1- Méga-uretère congénital

Définition:

On parle de méga-uretère congénital lorsqu'il existe une distension très importante de l'un ou des deux uretères non consécutive à une obstruction des voies urinaires basses. Une hydronéphrose lui est souvent associée [69].

Epidémiologie:

Cette affection est très rare et se rencontre aussi bien chez le chien que chez le chat [69].

Signes cliniques:

La présence d'un méga-uretère détermine souvent l'apparition d'un reflux vésico-urétéral de l'urine qui prédispose l'animal à l'incontinence urinaire et aux infections du tractus urinaire ascendantes [69].

Diagnostic:

Lorsque la clinique permet de suspecter l'existence d'un méga-uretère, on réalise habituellement une urographie intra-veineuse afin de confirmer le diagnostic ^[69].

S'il existe vraiment, on observe sur les clichés un trait plein entre le rein et la vessie, correspondant à l'uretère, dont le diamètre est anormalement important ^[69].

2- Valvules urétérales congénitales

Définition:

Cette anomalie est caractérisée par la présence de valvules dans l'un ou les deux uretères. Elle a été décrite chez le chien et le chat mais reste exceptionnelle [69].

Signes cliniques:

En cas d'anomalie unilatérale, l'incontinence n'est pas systématique. Par contre, si l'anomalie touche les deux uretères, l'incontinence urinaire est toujours présente et parfois accompagnée d'une insuffisance rénale chronique consécutive à l'hydronéphrose ^[69].

Diagnostic:

La présence de valvules urétérales congénitales ne peut être révélée qu'au moyen d'une urographie intra-veineuse. On observe alors des défauts de remplissage transverses. Une hydronéphrose et un méga-uretère sont souvent associés ^[69].

3- Reflux vésico-urétéral

Définition:

Un reflux vésico-urétéral est un écoulement d'urine anormal qui a lieu de la vessie vers les uretères [69].

Epidémiologie:

Ce reflux peut être physiologique, pathologique, ou déclenché intentionnellement.

Il affecte plus souvent les chiens que les chats, peut atteindre les deux sexes, est souvent bilatéral et touche plus souvent les jeunes même si cette affection peut également être acquise^[69].

Pathogénie et signes cliniques :

Le reflux vésico-urétéral est dû à une anomalie de l'implantation des uretères au niveau de la paroi de la vessie. En effet, l'implantation habituellement oblique des uretères leur permet d'être des « clapets » naturels aussi bien lors du remplissage que lors de la vidange de la vessie (cf. Figure 9, p 41) [69].

Ce reflux provoque alors une rétention urinaire qui facilite l'apparition d'infections urinaires hautes, de cystites chroniques et d'urétérites. Ce sont ces complications qui peuvent être à l'origine d'incontinence urinaire, associée alors à une dysurie, une pollakiurie, une strangurie, une hématurie...^[69].

Diagnostic:

L'existence de cette anomalie peut être suspectée chaque fois qu'une jeune animal présente des symptômes caractéristiques d'une infection urinaire chronique. Pour établir le diagnostic, on réalise alors en général une cystographie rétrograde à simple ou double contraste (cf. Radiographie 2) [69].

Radiographie 2: Reflux vésico-urétéral.

Une cystographie double contraste a été réalisée. Le produit de contraste marque un uretère par voie rétrograde jusqu'au bassinet du rein correspondant.

Maï [73].

Traitement:

En présence d'un reflux vésico-urétéral, il faut avant tout traiter les infections urinaires concomitantes afin d'éviter l'apparition de lésions rénales irréversibles.

Quant au traitement chirurgical, il consiste à allonger le trajet intrapariétal de l'uretère mais les résultats sont inconstants ^[69].

L'urétéronéphrectomie est la seule solution envisageable lorsque l'anomalie est unilatérale et qu'elle a occasionné d'importantes lésions rénales [69].

4- Urétérocèles

Définition:

Les urétérocèles sont, au sens strict, des dilatations pseudokystiques de l'extrémité sous-muqueuse de l'uretère. En réalité, l'urétérocèle est une malformation où sont impliqués l'uretère mais également les différentes structures environnantes telles que la vessie, la filière cervico-urétrale, etc... [38; 98].

Les urétérocèles sont fréquemment associées à d'autres anomalies de l'appareil urinaire supérieur et à des altérations structurales de la vessie [38].

Pathogénie:

La pathogénie des urétérocèles reste inconnue. Les hypothèses proposées sont une sténose congénitale du méat urétéral, un défaut de fusion du conduit métanéphrique et du sinus urogénital, une myogénèse anormale de la partie distale de l'uretère ou une faiblesse des tissus au niveau de l'implantation de l'uretère [40; 78; 98].

<u>Classification des urétérocèles</u>:

On peut classer les urétérocèles en deux grandes catégories : elles sont dites orthopiques si les uretères s'abouchent à la vessie dans le trigone vésical, ectopiques dans le cas contraire (cf. Figure 12) [78; 98].

On peut ensuite différencier trois grades suivant les anomalies qui leur sont associées [98]:

Grade 1 : absence d'affection rénale ou urétérale associée.

<u>Grade2</u>: affection rénale ou urétérale unilatérale.

Grade 3 : affection rénale ou urétérale bilatérale.

La classification des urétérocèles est intéressante pour choisir le traitement le mieux adapté et proposer un pronostic ^[98].

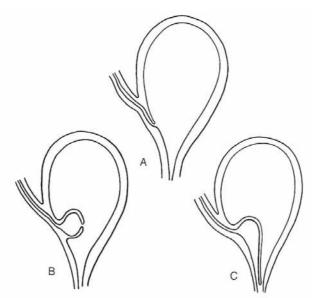


Figure 12 : <u>Abouchement des uretères au niveau de la vessie.</u>

A : abouchement normal, B : urétérocèle orthopique, C : urétérocèle ectopique.

Lamb [62].

Epidémiologie:

Les urétérocèles sont plus fréquemment rencontrées chez l'homme que chez les carnivores domestiques. Chez ces derniers, cette anomalie reste très rare ^[78].

Il a toutefois été observé chez le chien que les femelles sont plus touchées que les mâles et que les urétérocèles ectopiques sont plus fréquentes ^[40]. Cette malformation peut toucher de nombreuses races ^[54].

Elle n'a en revanche jamais été décrite chez le chat [38].

Signes cliniques:

Les urétérocèles sont souvent asymptomatiques, mais aussi parfois responsables d'infection chronique du tractus urinaire ou d'obstruction urinaire. On peut alors observer des symptômes tels qu'une pollakiurie, une dysurie, une hématurie, une incontinence paradoxale, un globe vésical ou une douleur abdominale. De plus, certaines urétérocèles obstructives peuvent se compliquer d'une hydronéphrose et d'un méga-uretère [38; 69; 98].

Les urétérocèles ectopiques sont généralement caractérisées par une incontinence urinaire, fréquemment associée à une infection du tractus urinaire [38; 98].

Diagnostic:

Suite à une suspicion de cette anomalie par les symptômes cliniques, on peut réaliser une urographie intra-veineuse ou une cystographie double contraste pour confirmer le diagnostic^[69; 98]. L'urographie intraveineuse permet d'observer des images pathognomoniques de l'anomalie, en « tête de cobra », dues à l'accumulation de produit de contraste au niveau de l'urétérocèle (cf. Radiographie 3) ^[38; 98].

Radiographie 3 : <u>Urographie intraveineuse chez une chienne présentant une urétérocèle associée à un uretère ectopique.</u>

L'urétérocèle est souligné par les flèches. V : vagin.

Holt et al [50].

L'échographie abdominale peut également permettre d'observer l'urétérocèle, visible dans la lumière ou la paroi vésicale comme une structure kystique lisse, à paroi mince (cf. Figure 13)^[38; 98].

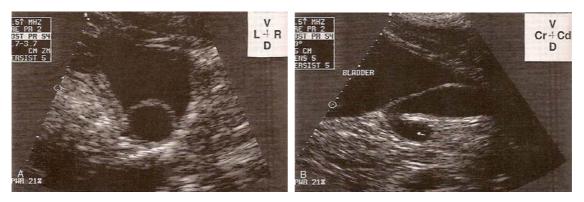


Figure 13 : Echographie d'une urétérocèle.

 ${f A}$: coupe transversale, ${f B}$: coupe sagittale sur laquelle on peut voir la communication entre l'uretère distal et la cavité sous-muqueuse (flèche). ${\bf Lamb}^{[62]}.$

Traitement:

Le traitement n'est envisagé que si des symptômes sont présents.

Traitement médical:

Si l'urétérocèle n'est pas trop importante (grade 1), un traitement médical peut suffire à corriger les symptômes ^[69].

Traitement chirurgical:

Mais le plus souvent, le traitement est chirurgical et consiste à lever l'obstruction urétérale s'il y en a une, et à enlever les parties lésées de l'appareil urinaire supérieur. La technique chirurgicale est choisie en fonction des anomalies associées à l'urétérocèle [99].

✓ Présence de lésions rénales :

En cas de lésions rénales très importantes, une néphrectomie partielle ou totale est réalisée [38; 69]

Sinon, la technique chirurgicale va de la simple incision de l'urétérocèle à l'exérèse, la reconstruction du plancher trigonal et la réimplantation urétéro-vésicale [38].

✓ Absence d'affection importante de l'appareil urinaire supérieur :

Dans le cas où aucune anomalie n'est associée à l'urétérocèle, il est possible de l'inciser par cystoscopie, comme on le fait chez l'homme. Cependant, cette technique n'est réalisable que chez les chiens de grande taille [98].

La technique la plus utilisée est alors une technique intermédiaire consistant en une excision en « bouche souriante » et une anastomose urétéro-vésicale éversante de l'urétérocèle. Cette technique semble procurer une ouverture suffisante pour éviter l'accumulation d'urine dans l'uretère et l'apparition d'une affection obstructive de l'appareil urinaire supérieur. Cependant, il ne faut pas que l'ouverture soit trop grande, sinon le risque de reflux urétéro-vésical et d'infection ascendante est important [38].

Technique chirurgicale [38]:

On réalise une cystotomie longitudinale ventrale, comme indiqué dans le cas de l'urétérocèlectomie.

Une section transversale en « bouche souriante » de l'urétérocèle est réalisée. La portion caudale de l'urétérocèle est appliquée à la paroi vésicale à l'aide de points en U. les fils de sutures (PDS déc 1,5) traversent la séreuse, la musculeuse et prennent l'épaisseur de la paroi de l'urétérocèle.

Puis une anastomose urétéro-vésicale éversante des bords crânial et latéraux est effectuée à l'aide de points simples pratiqués avec du fil résorbable (PDS déc 0,7).

✓ Présence d'anomalies de la paroi vésicale :

Quand la paroi vésicale présente, au niveau du site de terminaison des uretères, des remaniements trop importants, on réalise une urétérocèlectomie suivie d'une réimplantation de l'uretère.

<u>Technique chirurgicale</u> [69] :

L'animal est placé en décubitus dorsal.

Une laparotomie médiale ventrale est effectuée. La vessie est alors isolée de la cavité abdominale par des compresses imbibées de soluté isotonique de chlorure de sodium tiédi.

Des fils de traction sont mis en place au niveau de la paroi vésicale pour faciliter l'incision et la manipulation de la vessie pendant l'intervention.

On pratique une cystotomie longitudinale ventrale de quelques cm. La zone du trigone vésical peut alors être observée.

On identifie un plan de dissection, soit entre les couches du trigone vésical, soit entre la muqueuse et la sous-muqueuse vésicales, en fonction du lieu d'abouchement de l'uretère.

Ce plan de dissection permet l'isolement de l'urétérocèle, qui est alors réséquée.

Une réimplantation de l'uretère est ensuite effectuée selon la technique d'urétéronéocystostomie décrite dans le chapitre 3 (p 171).

Enfin, des sutures des parois vésicale et abdominale sont mises en place.

Une échographie abdominale permet de contrôler la disparition de l'urétérocèle [38].

C- La vessie

Les malformations de la vessie sont assez rares chez les carnivores domestiques. Les plus fréquentes sont l'anomalie de position de la vessie qui est alors située dans la filière pelvienne et la persistance du canal de l'Ouraque qui, même si elle n'entraîne pas d'incontinence urinaire au sens strict, sera traitée dans ce paragraphe. Les autres anomalies vésicales, plus rares, sont la duplication vésicale, l'hypoplasie ou l'aplasie vésicale et l'exstrophie vésicale.

Le plus souvent, ces malformations s'expriment par une incontinence urinaire. Une infection du tractus urinaire est souvent présente [8].

Le diagnostic repose sur l'examen externe de l'animal, la radiographie avec ou sans produit de contraste et l'échographie [8].

Le traitement médical peut apporter une aide mais le plus souvent, les animaux sont traités chirurgicalement [8].

1- Persistance du canal de l'ouraque

Rappels embryologiques:

Le canal de l'Ouraque est un conduit urinaire provisoire qui se situe anatomiquement entre la vessie et l'ombilic (cf. Figure 14). Chez le fœtus, il permet l'écoulement de l'urine définitive vers l'allantoïde. Vers six semaines, il se ferme progressivement et forme le ligament vésical médian [8; 60; 69].

Ainsi, lors de persistance complète du canal de l'Ouraque, il n'y a pas d'incontinence au sens strict mais un écoulement continu d'urine par l'ombilic [29].

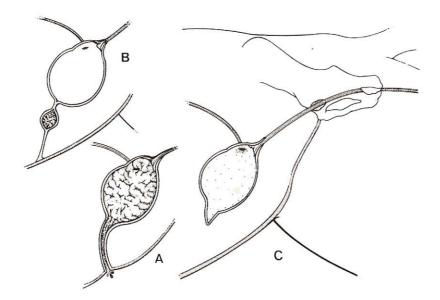


Figure 14 : Les anomalies congénitales de l'ouraque.

A : Persistance du canal de l'ouraque, B : Kyste du canal de l'ouraque,

C : Diverticule de l'ouraque.

Kruger et al [60].

Epidémiologie:

La persistance complète du canal de l'Ouraque, même si elle reste rare chez les carnivores domestiques, est l'anomalie congénitale vésicale la plus fréquente chez ces espèces [18; 60; 86]. Elle ne présente pas de prédisposition raciale ou sexuelle [54; 69].

Pathogénie et signes cliniques :

Le canal de l'Ouraque, lorsqu'il persiste entièrement, peut être d'emblée fonctionnel ou bien rester discret jusqu'à ce qu'une augmentation pathologique de la pression intra-vésicale ne vienne révéler son existence, lors d'une obstruction du bas appareil urinaire par exemple ^[69]. On peut alors observer un écoulement d'urine par l'ombilic, ce qui provoque une dermatite locale et favorise les infections vésicales ascendantes, fréquemment accompagnées de calculs ^[20; 60; 69].

Les facteurs responsables de la persistance du canal de l'ouraque sont inconnus [60].

Diagnostic:

Le diagnostic de cette anomalie est clinique si l'écoulement d'urine est directement visible. Dans le cas contraire, il faut alors recourir à une cystographie double contraste ou une pneumocystographie, voire une laparotomie [8; 46; 69].

Traitement et pronostic :

Le traitement de la persistance du canal de l'ouraque est chirurgical. Il consiste à réséquer le canal de l'Ouraque. En cas d'infection du tractus urinaire, il faut la traiter préalablement par une antibiothérapie [20; 29; 69].

<u>Technique chirurgicale</u> [29]:

L'animal est placé en décubitus dorsal. Une laparotomie ventrale est réalisée 3 cm de part et d'autre de l'ombilic.

Le canal de l'Ouraque est disséqué depuis l'ombilic jusqu'à la vessie.

On place ensuite un écarteur de Balfour et on isole la vessie à l'aide de grosses compresses humidifiées. Des fils de traction sont placés sur la vessie.

Une incision elliptique est réalisée autour de l'origine vésicale du canal de l'Ouraque.

Les fils de traction sont ensuite retirés. La vessie ainsi que la paroi abdominale sont refermées classiquement (cf. Annexe 5).

Il est conseillé de réséquer le canal de l'Ouraque plutôt que le ligaturer car cette dernière méthode peut permettre la formation d'un diverticule de l'Ouraque, prédisposant alors aux infections du tractus urinaire [29].

Le pronostic est plutôt bon, les complications sont rares et le traitement chirurgical suffit généralement à faire disparaître les symptômes [29; 69].

2- Duplication vésicale

Définition:

La duplication vésicale est une anomalie congénitale qui se caractérise par la présence de deux vessies plus ou moins distinctes chez un même animal ^[69].

Les deux vessies sont le plus souvent reliées par un simple petit muscle, même s'il peut arriver que l'une s'abouche dans l'autre en amont du col vésical [69].

Ces vessies peuvent posséder chacune un uretère et un urêtre ou bien une seule vessie possède une paire de chaque conduit [69].

Pathogénie:

Cette duplication est consécutive à une invagination anormale des parois latérales du cloaque, aussi appelées plis urorectaux, qui le divisent normalement en deux parties, l'une dorsale et l'autre ventrale [69].

Lorsque cette duplication est *sagittale*, elle est souvent associée à d'autres malformations digestives, osseuses, ou urinaires. Pour cette raison, certains auteurs pensent qu'elle résulte alors en fait d'un phénomène de duplication touchant à la fois la corde spinale et le cloaque. Mais pour d'autres auteurs, ces différents troubles seraient plutôt dus à une gémellité incomplète du notocard et des tissus à l'origine des viscères abdominaux caudaux ^[69].

Par contre lorsqu'elle est *transversale* ou *autre*, ce qui est beaucoup plus rare, elle survient généralement seule [69].

Epidémiologie:

Cette anomalie est exceptionnelle chez le chien, mais les races les plus touchées semblent être le Bouledogue Anglais et le Doberman. Elle n'a jamais été décrite chez le chat ^[54; 69].

Lésions associées :

Des anomalies des autres appareils peuvent être associées [69].

Signes cliniques:

Les symptômes pouvant être observés sont une distension de l'abdomen, une incontinence urinaire permanente ou intermittente, liée à un changement de position et des signes de cystite ou de lithiase urinaire.

On peut également remarquer d'autres symptômes en rapport avec les autres anomalies associées [69].

Diagnostic:

Après une suspicion de cette anomalie grâce aux symptômes cliniques, on peut confirmer le diagnostic par une urographie intraveineuse ou une pneumocystographie [69].

Traitement:

Le traitement consiste en général à réséquer la vessie double. Malheureusement, lorsque les anomalies associées sont trop importantes, on doit parfois recourir à l'euthanasie [69].

3- Vessie pelvienne

La vessie pelvienne fait partie des causes prédisposant à l'incompétence sphinctérienne urétrale. Elle sera donc traitée dans le paragraphe correspondant.

4- Aplasie ou hypoplasie vésicale

Définition:

L'aplasie vésicale est une anomalie qui se caractérise par l'absence de vessie. Elle est extrêmement rare ^[60; 69]. Quant à l'hypoplasie vésicale, elle est caractérisée par une vessie de petite taille, et est souvent associée à une ectopie urétérale ou une incompétence du sphincter vésical ^[46; 60; 69].

Il arrive que l'hypoplasie vésicale soit la cause de l'incontinence postopératoire après une correction chirurgicale d'uretère ectopique. La capacité de la vessie peut alors augmenter pendant les mois qui suivent l'opération [69].

Epidémiologie:

Ces anomalies se rencontrent aussi bien chez le chien que chez le chat. Les races canines les plus touchées sont le Bouledogue anglais et le Doberman [54].

Signes cliniques:

Ces défauts se traduisent le plus souvent par une incontinence urinaire dont l'importance est fonction de la taille de la vessie. Plus la vessie est petite, plus l'incontinence est prononcée^[69]. Les mictions sont très fréquentes et l'animal urine pendant la nuit ^[46].

Diagnostic:

Le diagnostic est établi grâce à des techniques radiographiques rétrogrades avec produit de contraste. Il est important lorsqu'on suspecte cette anomalie de limiter la quantité de produit utilisée afin d'éviter l'éclatement de la vessie [46; 69].

Traitement:

Il n'existe pas de traitement médical ou chirurgical efficace pour corriger ces anomalies. Cependant, la situation s'améliore avec l'âge chez certains sujets atteints d'hypoplasie vésicale [46]. Des parasympathicolytiques (anticholinergiques) peuvent également aider la vessie à mieux se remplir [46].

5- Exstrophie vésicale

Définition:

L'exstrophie vésicale est une anomalie congénitale caractérisée par l'absence des parois ventrales abdominale et vésicale.

Souvent, l'appareil digestif ainsi que l'appareil génital externe présentent également des anomalies ^[60].

Epidémiologie:

Cette malformation existe chez le chien et le chat ^[20; 69]. Elle est néanmoins extrêmement rare^[60].

Signes cliniques:

L'examen externe de l'animal permet d'aboutir au diagnostic [60].

Traitement:

La correction de l'exstrophie nécessite une reconstruction chirurgicale, son succès dépend de la sévérité des anomalies du tractus urinaire et des lésions associées. Cependant, le pronostic est très sombre et le traitement est rarement tenté [20; 60].

6- Fistule uro-rectale

Définition:

La fistule uro-rectale est une communication entre la vessie et le rectum [60].

Epidémiologie:

C'est une anomalie congénitale rare chez les carnivores domestiques [60].

Pathogénie:

Ce défaut résulterait d'une incomplète division du cloaque pendant l'embryogenèse ou pourrait être acquis après la naissance [60].

Signes cliniques:

Cette fistule prédispose à l'incontinence urinaire et aux infections du tractus urinaire [60].

Traitement:

Le traitement est chirurgical et consiste à disséquer la fistule, la ligaturer avec du fil polypropylène décimal 1 et la réséquer [59; 60].

D- L'urètre

Les malformations congénitales de l'urètre sont assez peu fréquentes chez le chien, rares chez le chat. Ces anomalies semblent plus fréquentes chez le mâle que chez la femelle [59].

Les signes cliniques dépendent de l'anomalie mais le plus souvent on observe une incontinence urinaire, des signes d'infection du tractus urinaire ou des signes d'obstruction urinaire [59].

Le diagnostic repose sur l'examen externe de l'animal et la radiographie avec produit de contraste [59].

Le traitement est médical ou chirurgical le plus souvent [59].

1- Duplication urétrale

Définition:

La duplication urétrale est une anomalie congénitale qui se traduit par l'existence de deux urètres complets ou non [69].

Une duplication urétrale *complète* se définit par la présence de deux urètres provenant du col vésical et ayant deux ouvertures distinctes sur l'extérieur ^[25].

Une duplication urétrale *incomplète* se définit par la présence d'un 2^{ème} urètre qui peut ou non commencer au niveau du col vésical et qui n'a pas forcément d'ouverture sur l'extérieur ^[25].

Epidémiologie:

Cette malformation est exceptionnelle chez les carnivores domestiques. Elle peut être associée à la duplication vésicale [25; 69].

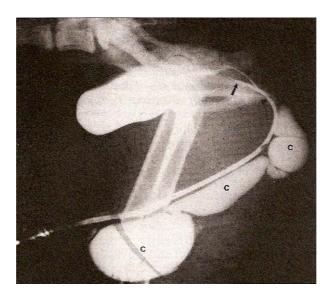
Pathogénie:

Chez le chien, la partie pénienne de l'urètre est formée par fusion du mésoderme latéral qui ferme la gouttière urétrale. La duplication urétrale apparaît suite à une croissance anormale du mésoderme latéral pendant la formation du tubercule génital [25; 102].

Signes cliniques:

Le plus souvent, cette anomalie est asymptomatique [25].

Lors de duplication urétrale *complète*, l'animal atteint peut présenter une incontinence urinaire suite à une insuffisance sphinctérienne d'au moins un des urètres ^[69].


Lors de duplication urétrale *incomplète*, des poches d'urine se forment à l'extrémité borgne de l'urètre. Elles peuvent alors être visibles sous forme de gonflements lorsqu'elles sont situées sous la peau. La compression de ces poches lorsque l'animal est couché par exemple, entraîne le reflux d'urine par l'urètre accessoire et la fuite d'urine par l'urètre principal ^[25].

De plus, ces poches d'urine peuvent provoquer des signes d'urétrite chronique ou de compression de l'urètre principal ^[69]. Des infections du tractus urinaire sont fréquemment observées ^[25; 102].

Diagnostic:

Les symptômes de cette anomalie étant peu spécifiques, il est nécessaire de réaliser des examens complémentaires ^[69].

On utilise alors l'urographie intraveineuse, l'urétrocystographie rétrograde, la cystographie double contraste et parfois des radiographies de contraste après injection de produit de contraste dans les poches d'urine (cf. Radiographie 4). L'anomalie peut être difficile à mettre en évidence si l'urètre accessoire est très étroit et ne laisse pas passer le produit de contraste [25; 102].

Radiographie 4 : <u>Duplication urétrale incomplète avec formation de poches d'urines chez un chien.</u>

Un conduit étroit communique avec l'urètre prostatique (flèche).

Duffey et al [25].

Traitement:

Le traitement n'est entrepris que si l'animal présente des signes cliniques [25; 102].

Il est alors chirurgical et consiste à ligaturer ou à réséquer l'urètre surnuméraire, parfois la vessie ou la poche d'urine associée ^[25; 69]. L'abord de la région est plus délicate chez le mâle en raison de l'hypervascularisation de la zone urétrale ^[69].

En cas d'infection du tractus urinaire, on met en place une antibiothérapie [25].

Les complications sont rares et l'intervention chirurgicale suffit généralement à stopper l'incontinence et à éliminer les récidives d'infection du tractus urinaire [25].

2- Sténose congénitale

Définition:

La sténose urétrale est une anomalie qui se caractérise par un rétrécissement du diamètre de l'urètre sur une longueur plus ou moins grande [69].

Pathogénie:

Cette sténose peut être congénitale ou acquise. On ne connaît pas toujours les mécanismes à l'origine de la sténose congénitale chez les carnivores domestiques. Chez l'homme, on sait

seulement qu'elles surviennent préférentiellement au point de fusion entre la membrane urétrale embryonnaire et le bulbe urétral ^[69].

Signes cliniques:

Les signes cliniques apparaissent si la sténose est importante ^[60]. L'augmentation de pression en amont de la sténose provoque alors une distension vésicale, une incontinence par trop-plein ainsi qu'une dysurie ou une strangurie, un méga-uretère voire une hydronéphrose ^[60; 69].

Généralement cette malformation de l'urètre s'exprime cliniquement après le sevrage de l'animal [69].

Diagnostic:

L'existence de cette anomalie doit être suspectée dès lors qu'un jeune animal présente une incontinence urinaire doublée d'une cathétérisation urétrale difficile. Cependant, ces éléments manquant de spécificité, il est ensuite obligatoire de réaliser une urétrographie rétrograde afin de la confirmer [69].

Enfin, on complète ces examens par une analyse d'urine sur bandelette urinaire et un ECBU en raison de la fréquence des complications infectieuses [69].

Traitement:

Le traitement de cette affection est chirurgical.

Lorsque la sténose est *extra-pelvienne*, une urétrostomie suffit à résoudre les signes cliniques^[60].

Lorsque la sténose est *intra-pelvienne*, deux techniques sont possibles : l'une consiste à inciser le segment urétral sténosé dans le sens longitudinal, puis à mette en place une sonde urétrale et enfin à greffer un peu de tissu au niveau de l'incision. La 2^{ème} méthode propose la résection et l'anastomose de l'urètre [60; 69].

3- Incompétence du sphincter urétral

Définition:

L'incompétence sphinctérienne des carnivores domestiques est une affection multifactorielle dont nous ne connaissons qu'imparfaitement l'étiologie et la physiopathogénie. On utilise le

terme « d'incompétence sphinctérienne » pour désigner une faiblesse du sphincter urinaire s'exprimant par une incontinence urinaire^[96].

L'incontinence apparaît lorsque la pression intra-vésicale est supérieure à la pression urétrale^[5; 47].

Epidémiologie :

Cette anomalie urétrale est, après l'ectopie urétérale, la seconde cause d'incontinence urinaire chez les jeunes carnivores domestiques. Dans une étude réalisée par Holt en 1990 sur 221 jeunes chiens référés pour incontinence urinaire depuis la naissance, l'incompétence du sphincter urétral représentait 34,39% des cas, dont 84,21% de femelles ^[46]. Néanmoins, cette pathologie est plus fréquente chez les chiennes stérilisées ^[1; 47; 74].

Chez le chien, ce sont donc les femelles qui sont principalement touchées ^[1; 5; 21; 23; 44; 47; 69; 96]. Aucune étude n'a pu réellement démontrer une prédisposition raciale, cependant, les moyennes et grandes races sont plus fréquemment atteintes ^[1; 47; 65; 74; 96].

Chez le chat, peu de cas ont été décrits. Ils concernaient uniquement des femelles, sans prédisposition raciale [44; 48].

<u>Lésions associées</u>:

Parmi les anomalies associées décrites *chez le chien*, on peut citer l'hypoplasie vésicale, la présence de diverticule de l'Ouraque, de fistule recto-vaginale, l'augmentation de largeur du col de la vessie et de l'urètre, une diminution de la musculature lisse ou striée de l'urètre, des diverticules urétraux, une dilatation de l'urètre pelvien ou une anomalie de l'innervation du tractus urinaire [2; 65; 74].

L'incompétence du sphincter urétral est également parfois associée à l'ectopie urétérale et permet parfois d'expliquer l'échec du traitement chirurgical de cette malformation [48; 74].

Chez le chat, les anomalies associées semblent plus courantes et plus diverses. Les plus fréquentes sont l'absence de vagin, l'hypoplasie vésicale et l'aplasie rénale [48].

Physiopathogénie de l'incompétence sphinctérienne :

Chez le chien et le chat, il n'existe pas de véritable sphincter au niveau du col de la vessie. La continence urinaire est assurée par un mécanisme complexe de facteurs qui interagissent entre eux. L'anomalie précise conduisant à l'incompétence sphinctérienne et sa localisation exacte sur l'urètre sont inconnues.

Les facteurs pouvant contribuer à l'incompétence du sphincter urétral sont le déficit en oestrogènes, la diminution du tonus urétral, la diminution de la longueur de l'urètre, l'anomalie de position de la vessie, des anomalies du muscle lisse urétral, l'âge de l'animal et l'obésité qui, sans être la cause de l'incontinence, peut l'aggraver [47; 74; 96]. La coupe de queue pourrait également jouer un rôle dans l'apparition de l'incompétence du sphincter urétral, mais le mécanisme est inconnu [74].

Les chats atteints d'incompétence sphinctérienne urétrale présentent presque toujours une hypoplasie marquée voire une absence de l'urètre [48].

Rôle de la position de la vessie :

On parle de vessie pelvienne lorsque le col vésical est situé caudalement au pubis ^[2]. La position pelvienne de la vessie n'entraîne pas systématiquement à elle seule d'incontinence urinaire ^[2]. Néanmoins, elle entraînerait une modification des forces de pression exercées sur la vessie par la paroi abdominale lors de décubitus. En effet, lorsque la vessie est en position abdominale, les forces de pression s'exercent à la fois sur la vessie et sur l'urètre alors que lorsque la vessie est dans la filière pelvienne, aucune pression n'est exercée sur l'urètre (cf. Figure 15 et Figure 16) ^[96].

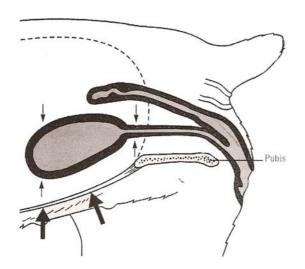


Figure 15: Répartition des forces de pression lors de décubitus latéral sur la vessie et l'urètre lorsqu'ils sont en position physiologique.

Simian-Salvay [96].

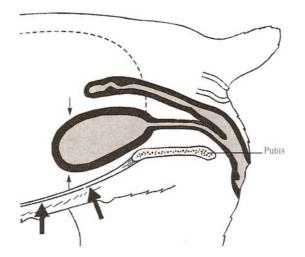


Figure 16 : Répartition inégale des forces de pression lors de décubitus latéral sur la vessie et l'urètre proximal lors de « vessie pelvienne ».

Simian-Salvay [96].

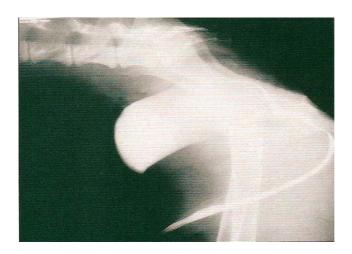
Cependant, certaines études ont montré que la position intrapelvienne de la vessie n'avait aucune influence sur l'apparition de l'incontinence, et les résultats postopératoires après une colposuspension sont comparables quelle que soit la position de la vessie [74].

Chez le mâle, le rôle de la position vésicale et de la longueur de l'urètre dans l'apparition de l'incompétence du sphincter urétral est mal défini ^[1].

Signes cliniques:

Les animaux atteints présentent une incontinence urinaire, plus sévère que celle observée lors d'ectopie urétérale. Chez les femelles, celle-ci s'aggrave encore lorsqu'elles se couchent ou sont excitées, ce qui n'est pas systématique chez le mâle [5; 47; 48; 65; 69].

Ils présentent en revanche des mictions normales et complètes [74].


Très souvent une infection du tractus urinaire est associée. Son apparition s'explique par la taille très réduite de l'urètre qui l'empêche de jouer efficacement son rôle de barrière naturelle antimicrobienne [1; 2; 47; 48; 60; 69].

Diagnostic:

En clinique, on doit suspecter une incompétence du sphincter urétral chaque fois qu'on se trouve face à une incontinence urinaire sévère.

Mais ce symptôme n'étant pas spécifique, il faut recourir à des examens complémentaires. On réalise donc une urographie intra-veineuse ou une vagino-urétrographie à double contraste, voire les deux si possible, afin de confirmer le diagnostic [1; 2; 47; 48; 69; 74].

En effet, l'*urographie intra-veineuse* permet de détecter la présence d'uretères ectopiques ou d'autres anomalies du tractus urinaire tandis que la *vagino-urétrographie rétrograde* permet de localiser plus précisément le site d'abouchement des uretères dans l'urètre ou le vagin. On contrôle ainsi l'abouchement des deux uretères dans le trigone vésical. Ce dernier examen permet également d'apprécier la forme et la position de la vessie (cf. Radiographie 5 et Radiographie 6) [23; 44; 47; 69; 74]. Cependant, le plus souvent, l'urographie intra-veineuse seule est réalisée.

Radiographie 5 : Vessie pelvienne chez un chien mâle.
Une cystographie simple contraste a été réalisée chez ce chien. La vessie est en position anormalement caudale, dans la filière pelvienne.

Maï [73].

Radiographie 6 : <u>Vessie pelvienne chez une chienne.</u>
La vessie est en position anormalement caudale, dans la filière pelvienne, l'urètre est court et large.

Lane et Lappin [65].

Néanmoins, ces examens ne sont pas toujours concluants chez les chiennes. Dans ce cas, les commémoratifs et l'absence de toute autre anomalie suffisent à établir le diagnostic [69; 74].

Il peut également être intéressant de questionner précisément les propriétaires et de réaliser une *analyse urinaire* ainsi qu'un *ECBU* afin d'éliminer la présence de polyuro-polydispsie ou d'une infection du tractus urinaire ^[1; 5].

L'*urétroprofilométrie* est un examen complémentaire intéressant mais encore peu utilisé en pratique (cf. Annexe 4). Elle peut montrer une diminution de la pression urétrale ainsi qu'une baisse de la portion de l'urètre dont la pression excède celle de la vessie chez la majorité des chiennes atteintes d'incompétence du sphincter urétral ^[74; 96].

Une méthode plus récente permet de déterminer si la déficience de remplissage de la vessie se produit en association avec une diminution de la pression urétrale [74].

Traitement, suivi et pronostic :

Le traitement de l'incompétence du sphincter urétral a pour but de faire disparaître l'incontinence urinaire. Il peut être médical ou chirurgical.

Traitement médical:

On cherche à renforcer le tonus du sphincter urétral lisse grâce aux α-sympathomimétiques. On peut donc utiliser la phénylpropanolamine (Rinutan®, Dénoral®, Propalin®) à la posologie de 1 mg/kg/jour, par voie orale, en 3 prises ^[69; 96]. Ce traitement est peu efficace chez le mâle ^[1; 5]. La phénylpropanolamine est déconseillée chez le chat, qui réagit souvent par une hyperexcitabilité ^[45].

Les **œstrogènes** stimulent le muscle lisse urétral, sensibilisent la vessie et l'urètre à l'effet α -adrénergique et facilitent l'élasticité de l'urothélium. Cependant ils présentent des effets secondaires et les animaux traités deviennent fréquemment réfractaires^[96].

L'efficacité du traitement médical lors d'incompétence sphinctérienne congénitale reste limitée [47].

Traitement chirurgical:

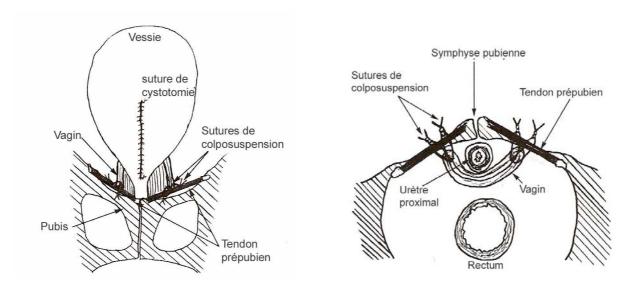
Il existe plusieurs techniques chirurgicales permettant d'améliorer voire d'éliminer l'incontinence urinaire dans le cas d'incompétence du sphincter urétral. La plus utilisée est la colposuspension mais d'autres techniques sont décrites, telles que la création d'un sphincter artificiel, la mise en place d'un anneau urétral, l'injection péri-urétrale de polytétrafluoroéthylène. Dans le cas d'hypoplasie urétrale sévère, les méthodes citées cidessus ne sont pas utilisables, on utilise alors une technique de reconstruction urétrale [44; 48; 60; 65; 69].

Chez les chiennes, il est important d'attendre la puberté avant de se lancer dans un traitement chirurgical car la moitié d'entre elles guériront spontanément à cette période [47; 65; 69; 96].

◆ La colposuspension ^[74; 96]:

Le principe de la colposuspension est de déplacer le col vésical en position intra-abdominale afin de renforcer l'action du sphincter vésical et la tonicité de l'urètre proximal. Cette technique est utilisée chez la femelle [96].

Dans un premier temps, une sonde de Foley est introduite dans l'urètre jusqu'à la vessie. Le ballonnet est alors gonflé puis la sonde est retirée afin que le ballonnet s'accole au col vésical. Ce dernier ainsi que l'urètre seront ainsi facilement identifiés lors de l'opération.


On réalise alors une laparotomie ventrale médiane caudale.

On insère un doigt dans le vagin afin de le tirer crânialement. Des pinces de Allis sont placées sur la paroi vaginale, de chaque coté de l'urètre, le plus caudalement possible.

Les gants stériles sont alors changés. La traction crâniale du vagin par le biais des pinces d'Allis permet de faire passer le col vésical en position intra-abdominale.

Le vagin est ancré au tendon prépubien par mise en place de une ou deux sutures de chaque coté de la ligne médiane (cf. Photo 1 et Figure 17). On utilise un fil monofilament en nylon décimal 3.

On s'assure ensuite que le vagin ne comprime pas l'urètre contre le pubis. Un instrument de type porte-aiguille doit pouvoir être introduit le long de l'urètre, entre le vagin et le pubis. Enfin, la paroi abdominale est refermée classiquement.

Figure 17 : <u>Vue ventrale et coupe transversale de l'abdomen caudal après colposuspension</u>. D'après Mouatt et Watt ^[80].

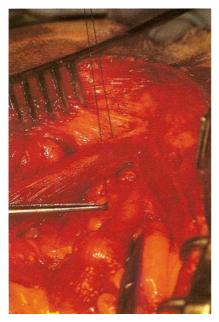


Photo 1 : Mise en place des sutures solidarisant la paroi vaginale au tendon prépubien.

Photo de gauche : mise en place de la 1^{ère} suture,

photo de droite : mise en place des 4 sutures.

Simian-Salvay [96].

♦ <u>La cysto-urétropexie</u>:

La cysto-urétropexie est une autre technique un peu différente de la colposuspension mais ayant le même principe : elle consiste à placer des sutures entre l'urètre et la paroi abdominale de façon à déplacer crânialement l'urètre. Cette technique permet également de diminuer le diamètre urétral. Cependant, seuls 10 chiens ont été opérés ainsi et les résultats semblent sensiblement inférieurs à ceux obtenus avec la colposuspension [96].

◆ <u>La vasopexie</u> ^[5]:

Chez le mâle, le traitement chirurgical est similaire à une vasopexie.

L'animal est placé en décubitus dorsal.

Les mâles entiers sont d'abord castrés par ligature distincte des canaux déférents et des vaisseaux testiculaires.

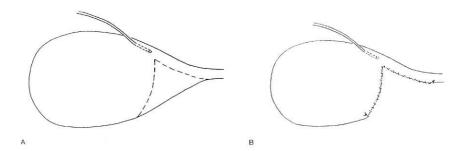
On réalise ensuite une laparotomie par une incision médiane caudale.

La terminaison caudale des canaux déférents est amenée en position abdominale par une légère traction. Une incision bilatérale de 4-5 mm de long est faite dans le muscle droit de l'abdomen. Les canaux déférents doivent faire un angle de 60° avec la ligne médiane. La partie libre des canaux déférents est ensuite passée à travers la paroi abdominale et maintenue par des points simples avec un fil PDS décimal 3.

Une fermeture classique de la paroi abdominale est ensuite réalisée.

Il est conseillé de réaliser une urétrocystographie postchirurgicale afin de contrôler le résultat de l'opération. Ainsi, sur les radiographies, on observe un allongement de l'urètre et un déplacement crânio-ventral de la vessie [5].

◆ <u>La reconstruction urétrale</u> [44] :


Deux méthodes sont décrites. La première consiste à exciser la partie caudale de la paroi vésicale ventrale, permettant d'allonger l'urètre. La deuxième permet de préserver la taille de la vessie et consiste en une reconstruction par rabats du col vésical.

Dans les deux cas, une ovario-hystérectomie est réalisée.

- Méthode d'excision du col vésical (cf. Figure 18 et Photo 2) :

Après une laparotomie médiane, on réalise par un abord ventral de la vessie une excision de sa partie caudo-ventrale, en arrière du niveau des méats urétéraux.

Un surjet simple suivi d'un surjet de Cushing permettent de fermer la vessie et de réaliser un allongement de l'urètre en arrière du col vésical. Le diamètre de l'urètre doit permettre de laisser passer une sonde urinaire de diamètre 4 chez la chatte, 8 chez la chienne.

Figure 18 : Reconstruction urétrale par excision du col vésical. Holt [44].

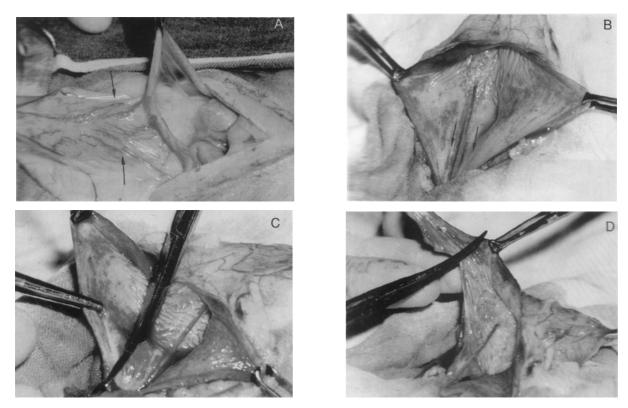


Photo 2 : Technique de reconstruction urétrale par excision du col vésical. Holt $^{[44]}$.

Après l'intervention, on réalise une vaginocystographie rétrograde afin d'évaluer sa réussite. Le cas échéant, on observe une vessie en position abdominale avec un urêtre de longueur normale (cf. Radiographie 7).

Radiographie 7 : <u>Vaginocystographie associée à une pneumocystographie chez une chatte</u>

<u>après l'opération d'excision du col vésical.</u>

Holt [44].

- Méthode de reconstruction par rabats du col vésical (cf. Figure 19 et Photo 3) :

Après une laparotomie médiane, une cystotomie ventrale est réalisée au niveau du col de la vessie et s'étendant jusqu'à l'urètre. Les valvules urétérales sont identifiées.

Deux rabats de l'épaisseur totale de la paroi vésicale sont créés et amenés crânialement. La partie latérale de la base des rabats doit se situer juste caudalement aux orifices urétéraux. La taille des rabats doit être telle qu'une sonde urinaire de diamètre 4 chez le chat et 8 chez le chien puisse passer facilement dans l'urètre.

L'ouverture est suturée à l'aide d'un surjet simple suivi d'un surjet de Cushing. La suture commence caudalement à l'urètre hypoplasié et continue crânialement afin de former un tube. Le reste de l'ouverture est fermé par suture des bords des rabats, créant une lumière entre les deux rabats. La taille de la vessie n'est donc pas diminuée.

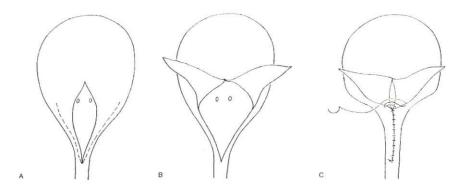


Figure 19 : Reconstruction urétrale par rabats du col vésical. Holt [44].

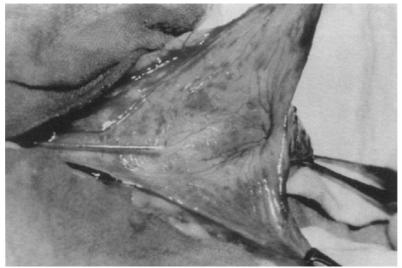
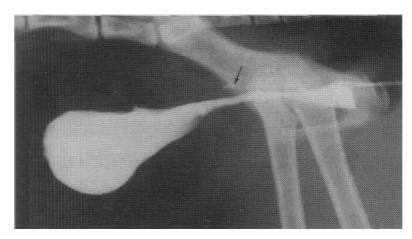



Photo 3 : <u>Technique chirurgicale de reconstruction du col vésical par rabats</u>.

Holt [44]

C'est cette seconde méthode qui est utilisée en chirurgie humaine [44].

Une vagino-urétrographie est réalisée après l'opération afin d'évaluer sa réussite. On observe une vessie en position abdominale et un urêtre de longueur normale (cf. Radiographie 8).

Radiographie 8 : <u>Vagino-urétrographie chez une chatte après l'opération de reconstruction</u> <u>du col vésical par rabats.</u>

On note un léger reflux de produit de contraste dans une corne utérine (flèche). Holt [44].

◆ <u>Soins postopératoires</u> :

Dans tous les cas, la réalisation de radiographies avec produit de contraste après l'intervention permet d'évaluer son succès.

Après l'opération, l'animal est mis sous antibiotiques et hospitalisé pendant quelques jours. Ensuite, du repos est prescrit pendant quatre semaines [74; 96].

◆ Complications :

Les complications postopératoires sont la dysurie voire l'obstruction urétrale [44; 74].

Certaines chiennes restent incontinentes uniquement par temps chaud. On pourrait l'expliquer par la déviation du débit sanguin vers les organes périphériques au détriment des muscles et des viscères afin d'assurer la régulation thermique. Or, un tiers de la pression urétrale est due au plexus veineux urétral. Ainsi, la baisse du débit sanguin au niveau de l'urètre entraîne la diminution de la pression urétrale, ce qui provoque l'incontinence [74]. Une autre hypothèse est l'augmentation de la prise de boisson lorsque la température extérieure augmente [74].

Lorsque le traitement chirurgical seul n'est pas satisfaisant, on peut y associer un α -sympathomimétique tel que la phénylpropanolamine [69].

♦ Résultats:

- Chez le chien:

Dans une étude réalisée par Marchevsky et al sur 17 chiennes atteintes d'incompétence sphinctérienne urétrale congénitale, 25% des chiennes opérées ont présenté un excellent résultat et sont devenues complètement continentes, 37,5% ont présenté un bon résultat et ont eu une amélioration notable des symptômes, et 37,5% ont présenté un mauvais résultat, c'est-à-dire aucune amélioration ou une amélioration suivie d'une dégradation dans les 2 à 8 semaines. Dans cette dernière catégorie, une réintervention ou une association avec un traitement médical ont permis dans certains cas d'améliorer les symptômes [74].

Les chiennes présentant une incompétence sphinctérienne urétrale congénitale présentent des résultats postchirurgicaux moins bons que les chiennes qui ont acquis cette anomalie ^[74]. De plus, elles répondent souvent mal au traitement médical. On pourrait expliquer ces résultats par la fréquence des anomalies du tractus urinaire associées ^[74].

Chez le mâle, les résultats du traitement chirurgical sont assez bons mais un traitement médical additionnel est parfois nécessaire ^[5].

- Chez le chat:

Dans l'étude réalisée par Holt en 1993 sur 8 chattes, la technique de reconstruction urétrale a permis de résoudre complètement l'incontinence chez 3 chattes et de l'améliorer en fréquence et en quantité chez les 4 dernières. Aucun traitement médical n'a été utilisé [44].

Cependant, il est difficile de savoir si l'amélioration de l'incontinence est due à l'augmentation de la longueur de l'urètre, au déplacement du col vésical qui se retrouve intra-abdominal ou aux deux ^[44]. De plus le faible nombre de cas ne permet pas de savoir si l'une des techniques est meilleure que l'autre. On peut néanmoins penser que la méthode d'excision du col vésical est conseillée chez les animaux ayant une vessie de taille normale tandis que la méthode de reconstruction par rabats du col vésical est à préconiser chez les animaux présentant une hypoplasie vésicale ^[44].

Par conséquent, l'incontinence par incompétence sphinctérienne congénitale présente un pronostic réservé [74].

4- Hypospadias et épispadias

Définition:

L'hypospadias est une anomalie congénitale qui se caractérise par la présence anormale de l'orifice urétral externe sur la face inférieure du pénis, en un point quelconque situé entre l'extrémité du gland et l'arcade ischiatique. En fonction de son emplacement, il est dit glandulaire, pénien, scrotal, périnéal ou anal ^[69; 89].

Dans le cas de *l'épispadias*, l'orifice urétral est situé sur la face dorsale du pénis [69; 89].

Pathogénie:

Les *hypospadias* résultent tous d'un défaut de fusion ventrale des bourrelets uro-génitaux et d'une formation incomplète de l'urètre pénien [69; 89].

Ces phénomènes seraient, chez l'homme, dus à un asynchronisme entre la synthèse des androgènes et le développement de l'urètre. Ainsi, des hypospadias ont été décrits chez des enfants dont les mères avaient reçu de la progestérone pendant leur grossesse.

Chez le chien, l'origine de cette anomalie n'est pas connue.

L'épispadias est une malformation plus rare que l'hypospadias. Elle serait due à une anomalie de position du tubercule génital ^[69].

Epidémiologie:

L'hypospadias serait l'anomalie urétrale la plus fréquente chez le chien. Les races chez qui elle a été décrite sont le Beagle, le Berger Allemand, le Boston Terrier, le Shih-Tzu et le Caniche nain [69].

Par contre, le chat ne semble pas être touché^[69].

Lésions associées :

Les anomalies associées à *l'hypospadias* sont assez fréquentes. Parmi celles-ci, on peut citer le développement incomplet du scrotum et du pénis, l'ectopie testiculaire et l'absence de fusion du prépuce [69; 89].

Les anomalies associées à *l'épispadias* sont fréquentes, en particulier l'ectopie testiculaire et la hernie inguinale ^[69].

Signes cliniques:

Les animaux atteints présentent une coloration du pelage ainsi qu'une dermatite prurigineuse, toutes deux dues à l'urine, autour de l'orifice urétral anormal [69; 89].

De plus, ils sont stériles faute de pouvoir éjaculer normalement et sont plus sensibles aux infections du tractus urinaire [69; 89].

Enfin, ils peuvent aussi parfois être incontinents, mais ce symptôme résulte en fait de l'existence de complications associées de l'appareil urinaire [69].

Diagnostic:

Habituellement, le diagnostic de ces anomalies se fait facilement au cours de l'examen externe du patient. Le plus souvent, il est utilement complété par une analyse d'urine ainsi qu'une urographie intra-veineuse qui permettent de vérifier l'absence d'infection du tractus urinaire ou d'anomalies associées [69].

Traitement:

Certains pensent que *l'hypospadias* est incurable. En revanche, pour d'autres, on peut traiter cette malformation par une urétrostomie, scrotale si l'orifice urétral se situe crânialement au scrotum, périnéale dans le cas contraire ^[59; 69].

Dans le cas de *l'épispadias*, on réalise une urétrostomie scrotale [69].

Dans tous les cas, on castre l'animal [89].

Si une infection urinaire est présente, un traitement antibiotique doit être mis en place au moins 24 heures avant l'opération [89].

Technique chirurgicale [89]:

L'animal est placé en décubitus dorsal.

Tout d'abord, on enlève le scrotum et on réalise une castration à cordon couvert ou découvert. Dans le cas de l'hypospadias scrotal, on préserve un peu de peau du scrotum pour la suturer à la muqueuse urétrale.

L'incision est ensuite prolongée crânialement jusqu'à l'ouverture urétrale lorsque celle-ci est proche de l'incision scrotale. L'incision s'étend ensuite dorsalement jusqu'au niveau du muscle rétracteur du pénis qui est alors incisé de la longueur du futur orifice urétral (cf. Figure 20–A).

Un cathéter est placé dans l'urètre, qui est incisé longitudinalement au niveau de la partie caudale du scrotum, jusqu'à l'endroit où il plonge plus profondément sous la peau. Une suture sous-cutanée par des points simples est réalisée pour aligner la peau avec le site de l'urétrostomie. On utilise pour cela du fil résorbable synthétique décimal 1 ou 2 (cf. Figure 20–B).

La muqueuse urétrale est ensuite suturée à la peau par des points simples séparés avec du fil monofilament irrésorbable décimal 1. La cicatrisation doit pouvoir s'effectuer entre ces deux épithéliums et la tension sur cette ligne de suture doit être minimale (cf. Figure 20–C).

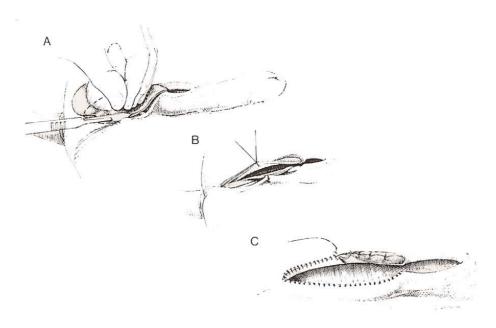
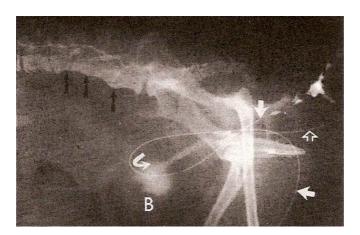



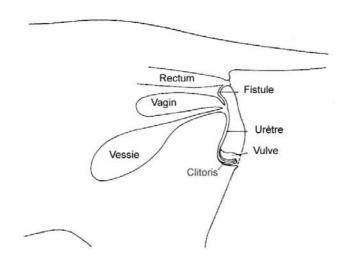
Figure 20 : <u>Technique chirurgicale de correction de l'hypospadias</u>.

Rawlings [89].

5- Fistules

La fistule urétrale est une anomalie congénitale existant chez le chien et le chat ^[20]. L'urètre communique avec le rectum, l'appareil génital ou le périnée (cf. Radiographie 9). Souvent des lésions lui sont associées. Certaines fistules peuvent entraîner une incontinence urinaire ^[20]. Le traitement est le plus souvent chirurgical ^[20].

Radiographie 9 : <u>Fistules urétro-rectale, urétro-périnéale et fusion vertébrale</u> chez un chien mâle.


Deux cathéters soulignent la présence de fistule. Le 1^{er} est introduit dans l'urètre, fait une boucle dans la vessie et passe ensuite dans la fistule urétro-rectale (flèches blanches pleines). Le 2^{ème} est introduit dans la fistule périnéale (flèche creuse).

Tobias et Barbee [102].

a- Fistule urétro-rectale

Définition:

La fistule urétro-rectale est une communication anormale entre l'urètre et le rectum (cf. Figure 21).

Figure 21 : <u>Schéma représentant la localisation de la fistule urétro-rectale chez une chienne.</u>
D'après Goulden et al ^[35].

Pathogénie:

Les fistules urétro-rectales apparaîtraient lors d'un défaut de fusion de la membrane cloacale avec la membrane uro-rectale ou lors de rupture précoce de la membrane cloacale [35; 88; 102].

Epidémiologie:

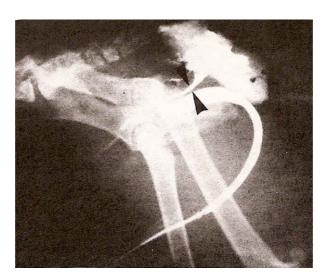
Le bouledogue anglais semble être une race prédisposée. Les mâles sont plus souvent atteints que les femelles [88; 102].

Lésions associées :

La fistule urétro-rectale est souvent associée à d'autres anomalies congénitales telles que l'intersexualité, l'ectopie urétérale, la duplication urétrale, des malformations vertébrales, une cardiopathie, une microphtalmie ou une déformation anale [35; 88; 102].

Signes cliniques:

Chez les femelles, une incontinence urinaire est souvent présente. En effet l'urine s'accumule dans le vagin pendant les mictions puis est émise entre les mictions par la vulve et l'anus ^[35]. Chez les mâles, on ne note souvent pas d'incontinence mais seulement une émission d'urine par l'urètre et l'anus pendant les mictions ^[35; 83].


Une infection du tractus urinaire, une pollakiurie, une hématurie ainsi qu'une dermatite périanale sont parfois associées [35; 83; 88; 102].

Diagnostic:

L'observation de l'animal pendant les mictions permet de détecter l'émission d'urine par l'anus. De plus, chez le mâle, lors de fistule urétro-rectale, l'urine est émise par l'anus seulement pendant les mictions alors que lors de fistule uro-rectale (communication entre la vessie et le rectum, cf. p 69), l'urine fuit par l'anus en continu [83].

Un examen digital ou à l'aide d'un ophtalmoscope du rectum permet parfois de détecter la présence d'un orifice sur le plancher du rectum [35; 83; 88].

On réalise également des radiographies avec produit de contraste telles qu'une urétrocystographie ou une urographie intraveineuse (cf. Radiographie 9 et Radiographie 10)^[35; 83; 88; 102].

Radiographie 10 : <u>Urétrographie rétrograde chez un chien atteint de fistule urétro-rectale.</u>

On note la présence de produit de contraste dans le rectum, la fistule est soulignée par les flèches noires.

Osborne et al [83].

Traitement:

Le traitement est chirurgical et consiste à disséquer la fistule, la ligaturer avec du fil polypropylène décimal 1 et la réséquer [35; 83; 102]. L'abord périnéal est à préférer à l'abord ventral car il est moins invasif. La mise en place préalable d'un cathéter dans la fistule facilite sa recherche [88].

Les résultats du traitement chirurgical sont généralement bons, même si une incontinence urinaire transitoire peut être observée après l'intervention [102].

b- Fistule uro-génitale

Définition:

La fistule uro-génitale est définie par la présence de cornes utérines ectopiques aboutissant dans la vessie [60].

Pathogénie:

Le développement des appareils urinaire et génital est très lié pendant l'embryogenèse, expliquant ainsi la fréquence d'association d'anomalies concernant ces deux appareils [60].

Epidémiologie:

La fistule uro-génitale est une anomalie très rare [60].

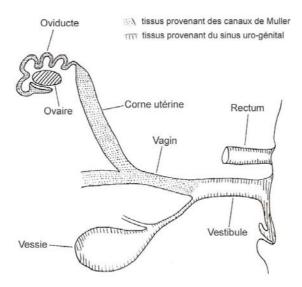
Signes cliniques:

Les signes cliniques sont de l'hématurie, une dysurie ou une incontinence urinaire [60].

c- Fistule urétro-périnéale

La fistule urétro-périnéale est caractérisée par la position anormale de l'orifice urétral externe, en région périnéale (cf. Radiographie 9) [102].

Ce type de fistule n'entraîne pas d'incontinence, tant que le sphincter urétral est fonctionnel.


E- Anomalies vaginales

Définition:

Les anomalies vaginales existantes sont essentiellement la persistance de l'hymen, les sténoses vestibulo-vaginales et les brides vaginales [53; 65; 90].

Pathogénie:

Ces anomalies sont dues à un défaut de fusion des conduits paramésonéphriques avec le sinus urogénital ou une perforation incomplète de l'hymen lors de la naissance (cf. Figure 22). Il y a alors persistance de septums vaginaux [53; 90].

Figure 22 : Origine embryonnaire des tissus de l'appareil génital femelle.

D'après Holt et Sayle [53].

Epidémiologie:

Aucune prédisposition raciale n'a pu être mise en évidence. Souvent, les anomalies sont diagnostiquées seulement à l'âge adulte [53; 90].

Signes cliniques:

Une incontinence urinaire est observée chez la majorité des chiennes présentant des anomalies vaginales ^[53; 65]. Elle serait due à l'accumulation d'urine dans la partie crâniale du vagin, qui s'écoulerait ensuite en dehors des mictions, en particulier lorsque la chienne change de position ^[53; 65]. Cependant, il serait également possible que les anomalies vaginales influencent la fonction urétrale.

Dans certains cas, les infections du tractus urinaire secondaires aux anomalies vaginales pourraient aussi contribuer au développement d'une incompétence sphinctérienne [65].

Les signes cliniques associés sont les vaginites chroniques, les écoulements vaginaux, les infections du tractus urinaires récidivantes et des difficultés lors de l'accouplement ou de la mise-bas [53; 65; 90].

Parfois les animaux atteints ne présentent aucun signe clinique ou seulement lors de l'œstrus. Il est donc difficile de connaître la véritable incidence de ces anomalies [90].

Diagnostic:

Le diagnostic est obtenu par réalisation, de préférence sous anesthésie générale, d'un examen vaginal par palpation et par vaginoscopie, voire la réalisation d'une vaginographie avec produit de contraste (cf. Radiographie 11) [53; 90].

Il est également important d'éliminer les autres causes d'incontinence urinaire [53].

Radiographie 11 : <u>Vaginographie rétrograde chez une chienne présentant un septum vaginal.</u>
Root et al ^[90].

Traitement:

Le traitement n'est entrepris que si l'animal présente des signes cliniques.

En cas de vaginite ou d'infection du tractus urinaire, une antibiothérapie est mise en place [90].

Le traitement médical est à base de phénylpropanolamine mais il est peu efficace [53].

Le *traitement chirurgical* consiste à élargir manuellement le vestibule en première intention. Ce traitement est suffisant pour éliminer les signes cliniques dans certains cas. Dans les autres cas, on réalisera alors une vaginectomie, en prenant soin de ne pas léser la vascularisation et l'innervation de l'appareil urinaire [53].

Chez les chiennes non stérilisées, on pratiquera en même temps une ovariohystérectomie [65; 90]

Le traitement chirurgical est efficace dans 2/3 des cas [53].

L'incontinence peut persister si d'autres anomalies de l'appareil uro-génital sont présentes ^[65]. Parfois, la sténose réapparaît après plusieurs mois ^[53].

F- Intersexualité

1- Etude générale

Définition:

Un hermaphrodite est un être normalement doté de deux sexes anatomiques fonctionnels. Il est donc capable de produire des gamètes mâles et femelles. Habituellement, chez les mammifères, seul l'embryon possède au début de son développement un potentialité sexuelle ambivalente. Ensuite, un seul des deux sexes se développe tandis que l'autre régresse. Ce sexe est le sexe mâle lorsque la formule gonosomique de l'animal est XY, le sexe femelle lorsque sa formule est XX [69].

L'intersexualité est une anomalie caractérisée par une altération de la différentiation des gonades, du tractus génital ou de l'appareil génital externe [13].

On peut distinguer deux sortes d'intersexualité : l'intersexualité gonadique, ou hermaphrodisme vrai, et l'intersexualité tubulaire ou pseudohermaphrodisme [13; 89].

Epidémiologie:

Cette anomalie est rare chez le chien et exceptionnelle chez le chat. En effet, chez ce dernier, seuls 6 cas d'intersexualité ont été rapportés [10; 51].

Les intersexués les plus fréquents sont les pseudohermaphrodites mâles, chez le chat comme chez le chien [10].

Rappels : différentiation de l'appareil génital :

Chez le mâle, le <u>chromosome Y</u> induit la synthèse d'un antigène de surface appelé H-Y qui permet la transformation des gonades en testicules [10; 13; 51; 69; 89].

Puis, à partir du 39^{ème} jour de gestation, les <u>cellules de Sertoli</u> sécrètent l'hormone antimüllerienne qui provoque l'involution des canaux de Müller. Les <u>cellules de Leydig</u>, quant à elle, sécrètent de la testostérone qui induit la virilisation des canaux de Wolff ainsi que celle des organes génitaux externes ^[10; 69].

Chez la femelle, la différentiation de l'appareil génital débute elle aussi par la différentiation des gonades, qui en l'absence d'antigène H-Y, donnent des ovaires.

De même, l'absence de sécrétion des hormones mâles explique la persistance des canaux de Müller et leur évolution en voies génitales femelles ainsi que la régression des canaux de Wolff.

Pathogénie:

Les anomalies embryonnaires hormonales ou chromosomiques sont à l'origine des intersexués ^[10].

Ainsi, l'altération d'au moins une des étapes de la différentiation de l'appareil génital peut produire des intersexués ^[51; 61; 69]. Il existe alors de nombreux types d'intersexués, qu'on peut néanmoins regrouper en 2 grandes catégories: les hermaphrodites vrais et les pseudohermaphrodites.

Les hermaphrodites sont la conséquence soit d'un défaut de production de testostérone ou d'hormone anti-mullérienne, soit d'un manque de sensibilité des récepteurs à ces hormones au niveau des organes, soit d'un excès exogène ou endogène d'androgènes [10].

Lésions associées :

Dans tous les cas, il faut noter que ces anomalies s'accompagnent souvent de malformations de voies urinaires en raison des liens étroits de leurs ébauches embryologiques avec celles de l'appareil génital [51; 69].

Signes cliniques:

L'incontinence urinaire est une anomalie fréquemment associée à l'intersexualité chez le chien ^[4; 13; 51]. Elle est attribuée à une malformation du sinus uro-génital consécutive à une différentiation embryonnaire incomplète. Ainsi, une fistule vagino-urétrale permet le reflux de l'urine dans le vagin au moment de la miction suivi d'une perte continue d'urine par l'urètre depuis le réservoir vaginal. Dans certains cas, on ne peut pas mette en évidence de fistule et on explique alors l'incontinence urinaire par perte passive d'urine depuis le vagin par des orifices anormaux (cf. Figure 23) ^[13; 37; 51].

Cette incontinence peut être le motif de consultation qui permettra de révéler l'intersexualité dans le cas où les organes génitaux externes sont apparemment normaux [13].

Ces troubles urinaires semblent être relativement plus fréquents chez les hermaphrodites vrais et les pseudohermaphrodites femelles que chez les pseudohermaphrodites mâles [13].

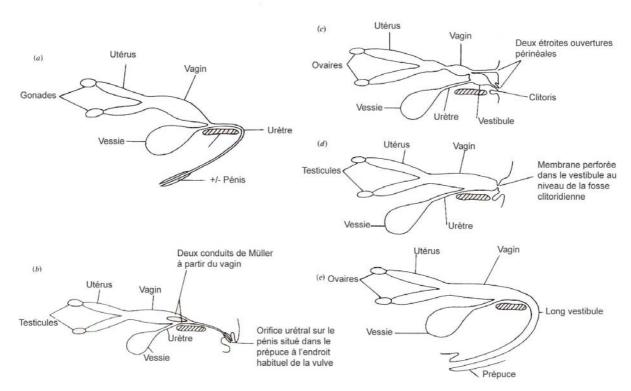


Figure 23 : Représentations schématiques de différentes anomalies anatomiques rencontrées chez les animaux intersexués.

(a): hermaphrodite, (b) et (d): pseudohermaphrodites mâles,
(c) et (e): pseudohermaphrodites femelles.
D'après Holt et al [51].

Diagnostic:

Quatre critères sont nécessaires pour l'évaluation définitive du sexe de l'animal : le caryotype, l'histologie des gonades, l'anatomie du tractus génital et l'aspect de l'appareil génital externe^[4; 10].

Les examens complémentaires pouvant être mis en œuvre sont donc l'examen externe complet de l'animal, les radiographies sans préparation et avec produit de contraste, la laparotomie exploratrice, l'examen histologique des gonades après exérèse et la réalisation d'un caryotype [10; 51].

2- Hermaphrodisme vrai

Définition:

Un vrai hermaphrodite est un animal qui possède simultanément une gonade de chaque sexe ou des ovotestis (glande à la fois ovaire et testicule) [10; 34; 69].

Leur caryotype est 78 XX/78 XY, 78 XY ou 78 XX. Dans ce dernier cas, il existerait alors sur l'un des chromosome un gène capable d'induire la synthèse de l'antigène H-Y [61; 69].

Epidémiologie:

Chez les carnivores, cette malformation semble être héréditaire. Le Cocker semblerait prédisposé à l'hermaphrodisme vrai en raison de la présence de l'antigène H-Y chez les animaux ayant un caryotype XX ^[4].

Cette anomalie est beaucoup plus rare chez le chat, chez qui un seul cas d'hermaphrodisme vrai a été répertorié, son caryotype était 38 XX/38 XY et il était phénotypiquement mâle ^[69].

Critères d'évaluation du sexe :

Appareil génital externe :

Habituellement, c'est l'inspection des organes génitaux externes qui permet d'établir le diagnostic d'intersexualité.

Chez le chien, la plupart des animaux hermaphrodites sont phénotypiquement femelles. On observe alors des voies génitales femelles avec un degré de masculinisation plus ou moins avancé [61; 69].

Le plus souvent, on peut remarquer un clitoris élargi possédant un os ^[4; 34; 69]. On peut également observer un pénis peu développé, sans os pénien, dans un prépuce ressemblant à une vulve, en position normale du pénis. Le scrotum n'est pas toujours présent ^[61].

Tractus génital:

Un tractus génital femelle plus ou moins complet est parfois présent [4; 15; 61].

Gonades:

Plusieurs cas sont possibles. Parfois, on observe un ovaire d'un coté et un testicule de l'autre^[15]. Parfois une seule gonade est présente ^[61]. Parfois les deux gonades contiennent à la fois du tissu testiculaire et ovarien ^[4].

L'aspect macroscopique ne correspond pas toujours aux résultats de l'histologie, ainsi, cette dernière est indispensable pour établir un diagnostic de certitude.

Souvent, le tissu gonadique est immature, les cellules sexuées sont absentes [4; 15].

Caryotype:

Le caryotype d'un hermaphrodite vrai est 78 XY, XX ou XX/XY (cf. Figure 24) [4; 15; 61].

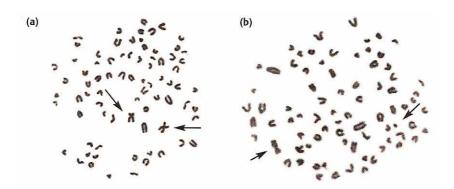


Figure 24 : Cellules en métaphase chez un animal hermaphrodite.

(a) : la cellule a 78 paires d'autosomes et une paire de chromosomes sexuels XX indiqués par les flèches, (b) : la cellule a 78 paires d'autosomes et une aire de chromosomes sexuels XY indiqués par les flèches.

Kuiper et Distl [61].

Signes cliniques:

Une incontinence urinaire peut être présente mais elle n'est pas systématique [61].

On peut également observer une hématurie et un comportement masculin tel que des chevauchements [4].

Diagnostic:

L'examen externe de l'animal, l'échographie voire la laparotomie permettent de détecter les anomalies présentes.

L'histologie après exérèse des gonades et la réalisation d'un caryotype sont essentielles pour un diagnostic précis de l'intersexualité ^[61].

Traitement:

Le traitement de cette affection consiste à éliminer chirurgicalement les anomalies invalidantes ou inesthétiques et à castrer l'animal ^[4; 69]. En effet, si les gonades sont des testicules et s'ils sont situés dans la cavité abdominale, le risque de tumorisation est augmenté^[61]. De plus, ces animaux seraient plus sujets à développer un pyomètre ^[61].

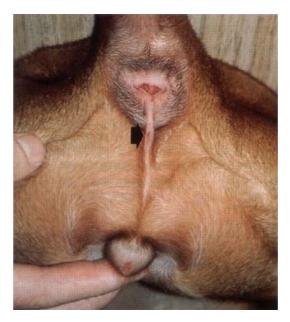
3- Pseudohermaphrodisme femelle

Définition:

Les pseudohermaphrodites femelles sont des animaux qui, malgré un caryotype femelle et des ovaires, présentent des voies génitales masculinisées. Cette masculinisation peut aller de la simple hypertrophie clitoridienne à la présence d'un pénis normal [10; 69].

Pathogénie :

Le pseudohermaphrodisme femelle est une anomalie congénitale due à l'imprégnation du fœtus par certaines hormones administrées à la femelle pendant sa gestation. Parmi ces hormones, on peut citer les androgènes et les progestagènes [14; 69].


Ainsi le recueil de l'anamnèse concernant les pseudohermaphrodites femelles est essentiel ^[4]. Cependant, certaines mères de pseudohermaphrodites femelles n'ont pas reçu d'injection d'hormones pendant la gestation. La pathogénie reste alors indéterminée ^[4].

Critères d'évaluation du sexe :

Le pseudohermaphrodisme femelle est une anomalie rare et peut revêtir plusieurs formes en fonction du degré de masculinisation des organes génitaux externes.

Appareil génital externe :

Le plus souvent, l'animal est pourvu d'une vulve de petite taille, en position très crâniale. Le clitoris peut être normal ou hypertrophié, avec parfois un os pénien (cf. Photo 4) [4; 14; 37].

Photo 4 : <u>Vue ventrale d'un animal pseudohermaphrodite femelle</u>. On note la petite ouverture vulvaire et la gouttière s'étendant de la vulve jusqu'à l'anus. Gregory et Trower [37].

Tractus génital:

Le plus souvent, on observe un tractus génital femelle normal [4].

Gonades:

Les gonades sont des ovaires qui ne présentent souvent aucune anomalie histologique [4; 14].

Caryotype:

Le caryotype est généralement $XX^{[4; 14]}$.

Un cas de pseudohermaphrodisme femelle avec un caryotype 78 XX/78 XY a été rapporté [16].

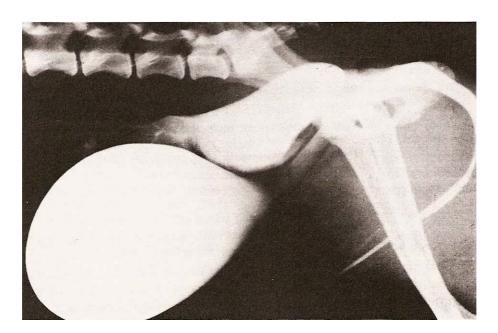
Signes cliniques:

Les pseudohermaphrodites femelles présentent souvent une dysurie et une pollakiurie dues à une cystite [14].

L'incontinence urinaire est un signe clinique fréquemment rapporté. En effet, la position anormale de la vulve rend difficile l'évacuation de l'urine, qui s'accumule alors dans le vagin. Un écoulement d'urine se produit ensuite entre les mictions [14].

Ces animaux ont généralement des cycles sexuels réguliers et une fertilité normale [14; 69].

Diagnostic:


L'examen externe de l'animal permet de remarquer la masculinisation de l'appareil génital externe.

Les examens complémentaires à mettre en œuvre pour confirmer le diagnostic et évaluer les anomalies de l'appareil génito-urinaire sont l'urographie intra-veineuse et l'urétro-vaginographie rétrograde (cf. Photo 5). On peut alors observer les différentes structures présentes et leurs éventuelles communications (cf. Radiographie 12) [37; 69].

Photo 5 : <u>Cathétérisation du « micro-pénis » chez un chien pseudohermaphrodite femelle.</u>

Gregory et Trower [37].

Radiographie 12 : <u>Urétrographie rétrograde réalisée 30 minutes après l'urographie intraveineuse sur un animal pseudohermaphrodite femelle.</u>

Holt et al [51].

Traitement:

Le traitement de choix est l'hystérectomie, il apporte de bons résultats ^[51].

Les deux cas de pseudohermaphrodisme femelle décrits par Gregory et al présentaient une fistule vestibulo-périnéale. Une opération visant à reconstruire le périnée a été tentée sur les deux animaux. L'intervention consistait à recréer un vestibule unique qui serait de taille suffisante pour permettre le passage de l'urine sans résistance trop importante [37].

4- Pseudohermaphrodisme mâle

Définition:

Les pseudohermaphrodites mâles sont des animaux qui, malgré un caryotype mâle normal et la présence de testicules, ont un tractus génital et un appareil génital externe plus ou moins féminisés [10; 34; 69; 89].

Pathogénie:

Le phénotype femelle observé est dû à un défaut de synthèse ou d'activité de l'hormone antimüllérienne et des androgènes dont la cause est inconnue [69].

Epidémiologie:

Le pseudohermaphrodisme mâle est le type d'intersexualité le plus rencontré chez le chien (50 à 60% des cas décrits) [13; 69].

Le Schnauzer, le Cocker Américain ainsi que d'autres races pures sont plus touchés, ce qui est en faveur d'une origine héréditaire, mais elle n'a pas été démontrée [34].

Lésions associées :

Des anomalies de l'appareil uro-génital, telles que des uretères ectopiques, sont fréquemment présentes chez le chien pseudohermaphrodite mâle. En revanche, aucune lésion associée n'a jamais été décrite chez le chat ^[10].

Critères d'évaluation du sexe :

Les voies et les organes génitaux femelles sont plus ou moins différenciés en fonction du degré de régression des canaux de Müller et du degré de masculinisation des canaux de Wolff^[69].

Appareil génital externe :

L'appareil génital externe peut être composé d'une vulve avec un clitoris péniforme ou d'un pénis de taille normale ou diminuée, avec parfois l'absence de fourreau (cf. Photo 6) [4; 34]. Les testicules sont normaux, présentent un aspect modifié ou sont absents [16].

Photo 6 : Appareil génital externe d'un pseudohermaphrodite mâle. On observe la vulve contenant un clitoris hypertrophié.

Gotthelf et Barnett [34].

Le chat décrit par Bredal et al présentait deux testicules séparés par un large orifice génital contenant un clitoris péniforme (cf. Photo 7) [10].

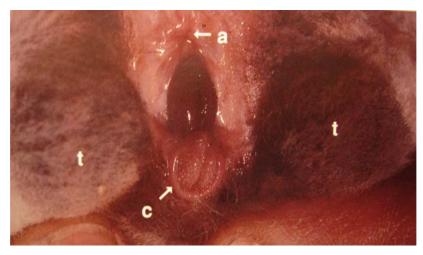


Photo 7 : Appareil génital externe d'un chat pseudohermaphrodite mâle. ${\bf a}$: anus, ${\bf t}$: sacs testiculaires, ${\bf c}$: clitoris péniforme. Bredal et al $^{[10]}$.

Tractus génital:

Généralement, le tractus génital interne est composé d'un utérus et d'un vagin de petite taille et formés de cellules immatures (cf. Photo 8) [4; 16; 34].

Photo 8 : Tractus génital interne d'un pseudohermaphrodite mâle.

Gotthelf et Barnett [34].

Dans le cas décrit par Bredal et al, le chat n'avait pas de tractus génital femelle [10].

Gonades:

Les testicules sont situés dans le scrotum ou, le plus souvent, dans la cavité abdominale, à la place habituelle des ovaires. Leur aspect macroscopique est normal ou modifié ^[16].

Parfois, la spermatogenèse est active mais dans la plupart des cas, elle est arrêtée à un stade précédent et les cellules germinales sont absentes [4; 16; 34]

Le chat décrit par Bredal et al présente des testicules situés dans le scrotum. A l'examen histologique, on observe des caractères mâles avec des lésions de dégénérescence des cellules tubulaires et l'absence de spermatogenèse [10].

Caryotype:

Le caryotype est généralement XY [16].

Un cas de pseudohermaphrodisme mâle avec un caryotye XX/XXY, un autre avec un caryotype XX ont été décrits chez des chiens mais cette situation est rare [4].

Signes cliniques:

Parfois, on n'observe aucun symptôme associé à cette anomalie. Dans d'autres cas, on peut observer une incontinence urinaire ou une hématurie [16] [10].

L'incontinence urinaire est surtout présente chez les animaux qui possèdent un uro-vagin, c'est-à-dire qui ont une vessie et un urêtre disposés anatomiquement comme chez le mâle et un vagin qui s'abouche directement dans l'urêtre. En effet, dans ce cas, une partie de l'urine est piégée dans le vagin lors des mictions, pour s'en écouler ensuite au goutte à goutte [46].

Enfin, on peut parfois observer les symptômes du sertolinome, fréquemment associé à cette malformation en raison de la position ectopique des testicules.

Diagnostic:

L'existence d'un pseudohermaphrodisme doit être envisagée chaque fois qu'on rencontre un animal ayant des organes génitaux externes anormaux ou qu'on observe une incontinence urinaire, associée ou non à une hématurie.

Pour confirmer le diagnostic, il est indispensable de réaliser une vagino-urétrographie et une urographie intraveineuse, une analyse histologique des gonades et un caryotype [10; 69].

Traitement:

Le traitement mis en place est différent selon les troubles morphologiques et les symptômes observés.

Ainsi, lorsque l'incontinence urinaire est le seul symptôme, on pratique une hystérectomie et on castre l'animal afin de prévenir l'apparition d'un sertolinome ^[69].

Par contre, si en plus de l'incontinence il existe un pénis ou un clitoris péniforme au niveau de la vulve, il faut, en plus de ces deux mesures, procéder à l'amputation du pénis et à la reconstruction d'un méat urétral [34; 69].

Enfin, lors de sertolinome seul, il n'est pas indispensable d'hystérectomiser l'animal ^[69]. Lors d'infection du tractus urinaire, on met en place une antibiothérapie ^[89].

<u>Technique chirurgicale de la clitorectomie</u> [89]:

Après exérèse des gonades et du tractus génital on place l'animal en décubitus ventral.

On réalise ensuite une épisiotomie (cf. Figure 25-A).

Le méat urétral est cathétérisé par une sonde souple. Le clitoris et la fosse clitoridienne sont explorés. Un incision elliptique permet l'exérèse de la muqueuse vaginale de la fosse clitoridienne (cf. Figure 25-B).

Le clitoris est ensuite excisé à son tour (cf. Figure 25-C).

L'incision vaginale est refermée par mise en place d'une suture à l'aide de fil résorbable synthétique. L'épisiotomie est ensuite refermée en prenant garde de laisser une ouverture suffisante (cf. Figure 25-D).

L'incontinence urinaire peut persister après l'opération si l'urine passe dans le vagin [89].

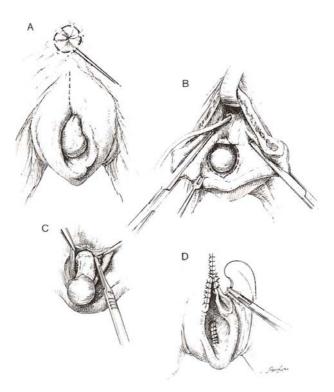


Figure 25 : Technique chirurgicale de la clitorectomie.

A : suture en bourse de l'anus et épisiotomie, **B** : incision elliptique permet l'exérèse de la muqueuse vaginale de la fosse clitoridienne, **C** : excision du clitoris, **D** : sutures.

Rawlings [89].

II- INCONTINENCE NEUROGENE: LES AFFECTIONS NEUROLOGIQUES CONGENITALES

Les affections neurologiques congénitales sont une cause moins fréquente d'incontinence urinaire chez le jeune. En outre, l'incontinence urinaire n'est généralement qu'une partie du tableau clinique.

A- <u>Etude spécifique des affections neurologiques</u> <u>congénitales</u>

1- Sténose vertébrale

Définition:

La sténose du canal vertébral est un terme qui regroupe tous les rétrécissements du canal vertébral. Les causes et les symptômes associés sont très variés ^[6].

Cette sténose peut être focale, segmentaire ou généralisée tout au long de la moelle épinière.

Classification:

En médecine humaine on a établi une classification étiologique des sténoses vertébrales. Certains éléments de cette classification peuvent être repris dans le cadre des malformations congénitales des carnivores domestiques ^[6]:

♦ Sténose vertébrale congénitale [6] :

Ce terme est employé pour désigner une sténose spécifique du canal vertébral qui est présente dès la naissance. Cette sténose peut être primitive ou associée à d'autres anomalies vertébrales telles que les hémi-vertèbres ou les fusions vertébrales.

La sténose est *absolue* dans le cas où la diminution du diamètre du canal vertébral engendre une compression directe de la moelle épinière.

Elle est *relative* si le diamètre du canal est inférieur à la normale mais qu'elle reste asymptomatique. Une compression plus importante peut cependant se produire suite à une protrusion de matériel dans le canal vertébral, comme dans le cas d'une hernie discale. Cela pourrait expliquer le fait que les symptômes n'apparaissent souvent qu'à l'âge adulte.

♦ Sténose due à une anomalie héréditaire de croissance du squelette [6] :

L'incoordination d'ossification et de croissance du squelette est due à une anomalie héréditaire ou à une mutation d'un gène. Les erreurs proviennent d'anomalies métaboliques ou autres des cellules impliquées dans le développement du squelette. Ces dysfonctionnements sont déjà présents à la naissance mais perdurent pendant la croissance, ce qui les distingue des sténoses congénitales.

Une sténose généralisée peut être observée plus fréquemment chez les chiens achondroplasiques, mais souvent, le rétrécissement est plus marqué au niveau lombaire. Les signes cliniques peuvent se développer tard dans la vie de l'animal.

♦ Sténose idiopathique [6]:

La sténose n'apparaît dans ce cas que lorsque la croissance est entièrement terminée. Ainsi, les signes cliniques n'apparaissent pas avant l'âge adulte chez l'animal.

Epidémiologie:

Les chiens de race Berger Allemand paraissent être plus touchés par ces malformations [6].

Signes cliniques [6]:

Les symptômes dépendent de la localisation de la lésion.

Les plus souvent, la compression de la moelle épinière se situe au niveau lombaire. Ce sont alors surtout les signes cliniques d'un syndrome de la queue de cheval qui sont observés, parfois les signes d'une myélopathie ou d'une mononeuropathie.

Les anomalies peuvent être unilatérales, bilatérales asymétriques ou bilatérales symétriques. L'évolution est brutale, progressive ou intermittente.

Diagnostic [6]:

Le plus souvent, la sténose est due à une malformation vertébrale et est donc visible sur des radiographies sans préparation.

Cependant, des radiographies avec produit de contraste sont parfois nécessaires pour confirmer la compression et éliminer les autres hypothèses.

D'autres techniques d'imagerie médicale telles que l'IRM ou le scanner peuvent aider à caractériser plus précisément la malformation.

Dans le cas où les signes cliniques et les anomalies observées grâce aux techniques précédemment citées sont très discrets, on peut avoir recours à l'électromyographie, aux

vitesses de conduction nerveuse, aux potentiels évoqués, à la mesure de la pression urétrale et à la cystométrie.

Traitement [6]:

Le traitement des sténoses vertébrales est médical ou chirurgical.

Chez un animal ayant des symptômes modérés, on peut prescrire des analgésiques, des antiinflammatoires et du repos. Cependant, après un certain temps, l'animal peut devenir réfractaire au traitement et les symptômes s'aggravent.

Une décompression chirurgicale peut alors être envisagée. Elle pourrait en fait être donner de meilleurs résultats si elle est pratiquée plus tôt dans l'évolution de l'affection. Une stabilisation interne peut être nécessaire si une instabilité importante est présente et visible sur les radiographies.

Les résultats sont souvent décevants chez les animaux présentant une incontinence urinaire et fécale mais cela pourrait être dû à l'intolérance des propriétaires vis-à-vis de cette anomalie de la fonction excrétoire.

2- Malformations osseuses

Ces anomalies n'ont, pour la plupart, aucune répercussion clinique. Parfois, cependant, elles peuvent entraîner [6]:

- une sténose du canal vertébral,
- une déformation progressive ou une angulation rachidienne quand le chien grandit ou vieillit,
- une modification du comportement biomécanique de la région atteinte, ce qui peut alors affecter le disque intervertébral et provoquer une sténose dégénérative.

Ainsi, les symptômes n'apparaissent parfois qu'après plusieurs années, lorsque le chien est déjà adulte, alors que l'anomalie est congénitale.

Ces anomalies seraient plus fréquentes chez les chiens brachycéphales et sans queue, tels que le Boston Terrier, le Bouledogue français et anglais, le Carlin ^[54].

a- Vertèbres de transition

Les vertèbres de transition sont des vertèbres qui possèdent les caractéristiques morphologiques des deux types vertébraux voisins (cf. Radiographie 13) [6].

Les anomalies peuvent être unilatérales ou bilatérales. Elles se rencontrent au niveau de la jonction cervico-thoracique, thoraco-lombaire, ou, comme c'est le cas le plus souvent, à la jonction lombo-sacrée [101].

Ces malformations sont le plus souvent cliniquement muettes [24].

Radiographie 13 : <u>Vertèbre de transition lombo-sacrée</u>. Sur la vue de profil, on note la non-fusion de la 1^{ère} vertèbre sacrée. Sur la vue de face, on remarque l'asymétrie des processus transverses.

Bailey et Morgan ^[6].

b- Hémi-vertèbres

Définition:

Les hémi-vertèbres résultent d'un défaut d'ossification d'une moitié du corps vertébral ^[6; 101]. Leur apex peut être dirigé ventralement, dorsalement ou médialement. Elles peuvent être associées à une angulation modérée ou sévère du rachis.

Elles sont uniques ou multiples, souvent associées à d'autres malformations vertébrales ou de la moelle épinière ^[6; 101].

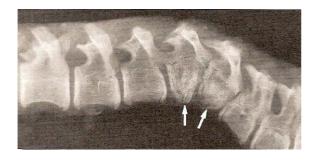
Pathogénie:

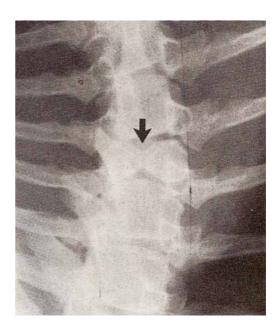
D'après une étude sur des embryons et des fœtus humains, ce défaut proviendrait d'une anomalie de resegmentation due à une distribution anormale des artères segmentaires ^[6].

Epidémiologie:

Cette anomalie est surtout rencontrée au niveau du rachis thoracique chez le Bouledogue anglais ou français, le Carlin et le Boston Terrier mais elle peut se produire à tous les niveaux de la colonne vertébrale, chez toutes les races de chiens [6; 24; 27; 79; 101].

Diagnostic:


♦ *Clinique* [6] :


S'ils sont présents, les signes neurologiques se rencontrent surtout chez les animaux immatures, et ils peuvent évoluer selon différents modes : leur apparition est brutale ou progressive, les signes sont permanents ou intermittents et se présentent le plus souvent sous la forme d'une parésie postérieure progressive [79].

On peut parfois observer ou palper la ou les malformations.

♦ Radiographique^[6]:

La radiographie permet de mettre en évidence sur le cliché de face une vertèbre en forme de « papillon », alors que sur le cliché de profil, elle présente un aspect en coin (cf. Radiographie 14) [79].

Radiographie 14 : <u>Hémi-vertèbres thoraciques.</u>
Bailey et Morgan ^[6].

♦ *Myélographique* [6]:

La myélographie doit être réalisée dans le but de confirmer que l'anomalie vertébrale est bien à l'origine des signes cliniques, par vérification de la corrélation neuroanatomique entre la clinique et la lésion radiographique.

♦ Différentiel:

On doit différentier les hémi-vertèbres de fractures traumatiques ou pathologiques.

Traitement [6]:

La compression de la moelle épinière peut être traitée par une décompression chirurgicale et une stabilisation si nécessaire.

Sur des cas sans complication, intéressants de jeunes animaux, on obtient de bons résultats postchirurgicaux. Cependant, la possibilité d'anomalies associées de la moelle épinière ne permet qu'un pronostic réservé.

c- Fusions vertébrales

Définition et pathogénie :

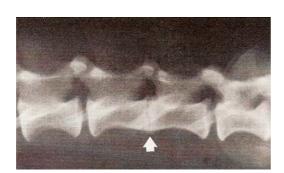
Une fusion vertébrale est le résultat d'un défaut de segmentation dû à des anomalies des artères intersegmentaires lors du développement de l'embryon [6; 79].

Cette malformation peut se produire à tous les niveaux de la colonne vertébrale avec cependant une fréquence supérieure au niveau des vertèbres cervicales et sacrées, et peut intéresser toute la vertèbre ou seulement une partie [6].

Signes cliniques:

Souvent, la longueur de l'ensemble des vertèbres fusionnées est plus faible que le nombre équivalent de vertèbres normales, ce qui peut provoquer une angulation anormale ou une sténose du canal vertébral. Ainsi, l'animal peut présenter des douleurs et des déficits neurologiques ^[6].

Cependant, cette anomalie reste le plus souvent asymptomatique et elle est découverte par hasard sur des radiographies ^[6; 24].


Diagnostic différentiel:

Il faut différencier les fusions vertébrales congénitales des fusions vertébrales secondaires aux discospondylites, des fractures et des luxations vertébrales, de l'exérèse chirurgicale des disques intervertébraux.

Dans le cas des fusions vertébrales congénitales, il n'y a pas de modification du tissu osseux.

<u>Diagnostic et traitement</u>:

Ils sont similaires à ceux décrits précédemment dans le cas des hémi-vertèbres (cf. Radiographie 15).

Radiographie 15 : <u>Fusion vertébrale de deux vertèbres lombaires</u>.

Bailey et Morgan ^[6].

d- Malformations de l'os occipital, de l'atlas et de l'axis

Les malformations de ces os peuvent provoquer une compression de la moelle épinière suite à la luxation atlanto-axiale ^[6; 79].

Les principaux symptômes associent une parésie ascendante progressive évoluant jusqu'à la paralysie, et une douleur cervicale avec rigidité ^[79].

♦ Malformation de la dent de l'axis :

Définition et pathogénie :

On observe une dent courte ou même absente, parfois un osselet est présent entre la pointe de la dent et le foramen magnum. Selon la théorie de Watson et Stewart, ces anomalies seraient dues à une nécrose ischémique secondaire à un traumatisme ^[6].

D'autres anomalies sont parfois associées.

Epidémiologie:

Cette malformation est surtout rencontrée chez les chiens de petite race ou de race naine, en particulier le caniche, le Yorkshire Terrier, le Chihuahua et le Pékinois ^[6; 27; 79].

Les chiens atteints ont généralement moins d'un an [6].

Signes cliniques [6]:

Les signes cliniques peuvent s'expliquer soit par une compression directe de la moelle épinière dans le cas d'une angulation anormale de la dent, soit par un traumatisme et une compression de la moelle épinière secondaire à une instabilité et une subluxation.

Les symptômes vont de la douleur cervicale à une myélopathie.

L'évolution peut être brutale, chronique ou épisodique.

Diagnostic [6]:

Le diagnostic est radiographique (cf. Radiographie 16).

Radiographie 16: Malformation de la dent de l'axis et de l'atlas.

L'absence de la dent de l'axis est visible sur les deux vues (flèches simples). La luxation atlanto-axiale est démontrée par l'augmentation de la distance entre ces deux vertèbres (flèche double). L'atlas est également hypoplasié.

Bailey et Morgan [6].

Traitement [6]:

Le principe du traitement est de réaliser une décompression de la moelle épinière suivie d'une stabilisation de la jonction atlanto-axiale. Dans la plupart des cas, on réalise une stabilisation chirurgicale.

Plusieurs techniques de stabilisation sont possibles :

- Chez les chiens jeunes et de petit format, une stabilisation externe peut suffire.
- Chez les chiens ayant seulement une douleur cervicale ou des déficits neurologiques très modérés, un traitement médical et une stabilisation externe sont suffisants.
- Chez les chiens ayant une sévère myélopathie, le risque d'une stabilisation chirurgicale est très important. On préfère donc réaliser un traitement médical agressif et une stabilisation par support externe.

♦ Malformation occipito-atlanto-axiale [6]:

Plusieurs malformations sont regroupées sous ce nom : la fusion de l'atlas avec l'os occipital, l'hypoplasie de l'atlas, souvent avec des processus transverses rudimentaires, un axis avec de grands processus transverses, une hypoplasie du processus spinal et de la dent de l'axis (cf. Radiographie 16).

Ces anomalies sont rares chez les chiens et les chats.

Les **signes cliniques** potentiellement associés à ces malformations peuvent s'expliquer par une subluxation atlanto-axiale.

Le **traitement** repose sur le même principe que celui de la malformation de la dent de l'axis.

lacktriangle Dysplasie occipitale ou entaille dorsale du foramen magnum $^{[6]}$:

Elle se caractérise par un foramen magnum anormalement grand.

Cette anomalie atteint surtout les chiens de petites races.

Les **signes cliniques** les plus fréquents sont de l'ataxie, des crises convulsives, un changement de personnalité, une dysphagie et une parésie. Cette malformation reste cependant le plus souvent asymptomatique [24].

Le **diagnostic** de certitude passe par une analyse du liquide céphalo-rachidien, un scanner et une IRM. Ces deux derniers examens permettent d'affirmer que la dysplasie occipitale est bien à l'origine des signes cliniques observés.

3- Exosotoses ostéocartilagineuses

Définition [6]:

Les exostoses ostéocartilagineuses sont des productions d'os entouré de cartilage.

Les os les plus fréquemment affectés sont les vertèbres, les côtes et les os longs.

Les exostoses sont uniques ou plus fréquemment multiples chez les carnivores domestiques.

Pathogénie [6]:

Ces exostoses se produiraient à partir de groupes de chondrocytes qui se déplaceraient depuis la périphérie des zones de croissance. Elles se développent ensuite par ossification endochondrale. Leur croissance s'arrête généralement lorsque le squelette est arrivé à maturité.

Epidémiologie:

Les chiens de race Berger Allemand, Malamute et Yorkshire Terrier seraient plus fréquemment affectés [54].

Signes cliniques [6]:

Le plus souvent, l'animal présente une myélopathie due à une compression directe ou indirecte de la moelle épinière. Parfois, selon la localisation de l'exostose, un syndrome de la queue de cheval ou une mononeuropathie sont observés.

$\underline{\textbf{Diagnostic}}^{[6]}$:

Radiographique:

Radiographiquement, les exostoses apparaissent comme des excroissances osseuses de taille variable, pouvant faire saillie de tous les os sauf les os plats d'origine membraneuse (cf. Radiographie 17).

Certaines exostoses sont facilement visualisables sur des radiographies simples. Pour celles situées dans le canal vertébral, des radiographies avec produit de contraste sont nécessaires.

L'incontinence urinaire du jeune chez les carnivores domestiques

Radiographie 17 : Exostose ostéocartilagineuse.

Bailey et Morgan [6].

Myélographique:

La myélographie est nécessaire pour prouver que l'exostose est bien à l'origine d'une compression de la moelle épinière pouvant expliquer les symptômes.

Histologique:

Le diagnostic définitif est établi par histologie après biopsie de la masse.

Différentiel:

Il s'agit de différentier les exostoses des tumeurs osseuses, des cals de fracture et des infections osseuses fongiques.

Traitement et pronostic [6]:

Il s'effectue par exérèse chirurgicale de l'exostose et décompression des structures neurologiques.

Le **pronostic** dépend de la sévérité du déficit neurologique et de la possibilité d'une exérèse complète des exostoses. Généralement, si l'exérèse est complète et que la maturité squelettique est atteinte, les exostoses ne devraient pas réapparaître. Cependant, on doit toujours garder un pronostic réservé en raison de la possibilité de l'existence d'autres exostoses non détectées et de l'éventualité de la transformation maligne de ces masses.

4- Spina bifida

Définition:

La spina bifida est un défaut de fusion des deux moitiés supérieures de l'arc vertébral lors du développement embryonnaire (cf. Radiographie 18) [6; 17; 75; 79; 95; 101; 105].

La spina bifida est une anomalie qui peut affecter un ou plusieurs segments vertébraux simultanément, et se produit surtout au niveau lombo-sacré, ou à la jonction sacro-coccygienne [28; 79; 101].

Cette malformation reste rare chez les carnivores domestiques (moins de 1/10 000), même si elle est bien décrite dans la littérature [17; 105].

L'agénésie sacrée du chat de l'île de Man et du Bouledogue anglais peut être considérée comme une forme de spina bifida ^[17]. Elle sera néanmoins traitée dans un paragraphe indépendant.

Radiographie 18 : <u>Spina bifida</u>.

Radiographie d'une section transverse d'une vertèbre thoracique avec un processus épineux bifide.

Bailey et Morgan ^[6].

Lésions associées :

Cette anomalie est parfois associée à d'autres non-fusions intravertébrales ou intracrâniennes, à des malformations vertébrales telles que les hémi-vertèbres et les fusions vertébrales, à une hydrocéphalie ou à des malformations de l'appareil génito-urinaire.

Ces associations ont été rapportées chez les carnivores domestiques, et plus particulièrement chez les Bulldogs et les chats de l'île de Man [6; 27; 28; 54; 95].

Classification:

On peut distinguer deux types de spina bifida:

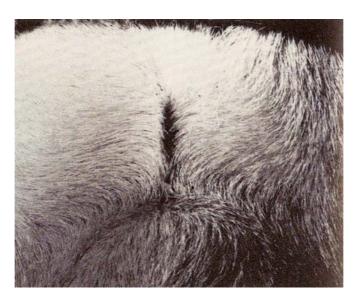
- *Spina bifida occulta* : elle correspond à un défaut de fusion des arcs vertébraux dorsaux sans protrusion de la moelle épinière ou des méninges. La plupart du temps, elle n'entraîne aucun symptôme et on la découvre par hasard sur des radiographies ^[6; 101; 105].
- *Spina bifida aperta* : dans ce cas, la lésion est ouverte sur l'extérieur et est alors évidente, et des symptômes y sont associés. Un *méningocèle* est une protrusion des méninges à travers l'ouverture des arcs vertébraux, tandis qu'un *myéloméningocèle* est une protrusion des méninges et de la moelle épinière [6; 79; 101; 105].

Pathogénie:

On peut distinguer quatre théories embryogénétiques : la théorie de l'arrêt de développement proposée par Von Recklinghausen, la théorie du surdéveloppement de Patten, la théorie hydrodynamique de Gardner et enfin, la théorie de la dysplasie neuronale de Padget ^[6; 105]. Néanmoins, aucune hypothèse ne peut expliquer à elle seule les différents types de spina bifida rencontrées. Ainsi, l'étiologie de cette anomalie est sûrement multifactorielle, mettant en jeu des éléments génétiques et environnementaux.

Epidémiologie:

La spina bifida est rapportée plus fréquemment chez le Boston Terrier, le Chihuahua, le Samoyède, le Dalmatien, et surtout, le chat de l'île de Man et le Bulldog [6; 17; 28; 82; 101; 105]. Chez le chat de l'île de Man, on suspecte une transmission de type autosomale dominante avec pénétrance incomplète. Dans les autres races, le type de transmission est inconnu [28].


Signes cliniques:

Les signes cliniques de la spina bifida varient en fonction de la sévérité de l'anomalie et de sa localisation [6; 24].

Examen externe de l'animal :

Les malformations sévères sont évidentes dès la naissance. En effet, on peut voir sur la ligne médiane dorsale de l'animal des zones ouvertes sur le canal vertébral ou des kystes qui font saillie à l'extérieur.

Lors de malformations moins marquées, on peut parfois observer un changement d'implantation ou d'aspect des poils, une dépression de la peau ou une palpation anormale à l'endroit de la lésion (cf. Photo 9) [17; 28].

Photo 9 : Changement d'implantation des poils en regard de la spina bifida. Wilson et al [105].

Examen neurologique:

L'exploration des déficits neurologiques, dans le cas où ils sont présents, permet de localiser l'anomalie. Celle-ci se situe le plus souvent en région lombo-sacrée ^[6; 28; 101].

Les symptômes les plus souvent rencontrés sont alors une parésie ou une ataxie des membres postérieurs, une paraplégie et une incontinence urinaire et fécale [28; 82; 95; 101; 105].

L'incontinence urinaire est caractérisée par la fuite d'urine au goutte à goutte, la vessie est facilement vidangée par taxis externe $^{[105]}$.

On peut également noter une perte de la sensibilité périnéale et une diminution du tonus du sphincter anal [82; 95].

Lorsque le méningocèle ou le myéloméningocèle est attaché à la peau, l'étirement de la moelle épinière provoqué explique la détérioration de l'état de l'animal lors de la croissance, en particulier lors des périodes de croissance rapide du squelette axial [28; 95].

Diagnostic [6]:

Radiographique:

Il est très facile par réalisation de radiographies sans produit de contraste. On observe des processus épineux anormaux ou absents et un déficit important de calcification et d'ossification des facettes articulaires dorsales (cf. Radiographie 19) [79].

Radiographie 19 : Spina bifida, vue de face.
On remarque le défaut de fusion du processus épineux.
Bailey et Morgan [6].

Myélographique:

Cependant, dans le cas où un traitement est envisagé, des radiographies avec produit de contraste permettent d'apporter plus d'informations sur la morphologie de la spina bifida, les anomalies de la moelle épinière, et l'éventuelle présence d'un étirement de la moelle épinière (cf. Radiographie 20) [6; 28; 79].

Radiographie 20 : Syndrome d'étirement de la moelle épinière observé grâce à une myélographie.

Sur la **vue de profil**, on note l'attachement des méninges et du cône médullaire à la peau. Sur la **vue de face**, on distingue la présence d'une hémi-vertèbre en T12 (petite flèche) et l'étirement de la moelle épinière en L7 (grosse flèche).

Shamir et al [95].

Autres examens complémentaires :

La réalisation d'un IRM ou d'une électromyographie permettent également d'affiner le diagnostic.

<u>Traitement</u> [6; 82] :

Le traitement chirurgical est rarement tenté.

Les *lésions sévères* sont incompatibles avec des conditions de vie acceptables pour l'animal et le plus souvent ce dernier est euthanasié.

Les animaux présentant des *anomalies moins sévères* peuvent subir une intervention chirurgicale reconstructive s'il n'y a pas d'atteinte de la moelle épinière elle-même. Des techniques de microchirurgie doivent être mises en oeuvre en raison de la petite taille des structures atteintes chez les carnivores domestiques ^[28].

Il ne faut cependant pas oublier que d'autres anomalies peuvent être associées.

Lors de *syndrome d'étirement de la moelle épinière*, il est possible de réaliser une opération consistant à sectionner l'attache entre la moelle épinière et les tissus environnants (cf. Radiographie 21). Cependant, même si ce traitement permet de stopper l'aggravation voire

d'améliorer les symptômes moteurs, il reste très délicat et ne permet pas de résoudre l'incontinence urinaire et fécale ^[28; 95]. Il est intéressant surtout lors de symptômes frustres et permet alors d'éviter l'apparition de la parésie et de l'incontinence urinaire et fécale ^[87].

Radiographie 21 : Myélographie 4 mois après réparation d'un myéloméningocèle attaché à la peau.

L'animal est le même que celui de la Radiographie 20. Le cône médullaire présente un aspect et une position normaux.

Shamir et al [95].

5- Dysraphisme médullaire

Définitions et pathogénie :

Le dysraphisme médullaire est une malformation congénitale héréditaire de la moelle épinière.

Elles provient d'une anomalie de développement des structures de la moelle épinière tout au long du plateau central aboutissant à la fermeture incomplète du tube neural [60; 79].

Les malformations existantes sont l'absence ou la dilatation du canal central, la cavitation de la substance blanche, la présence anormale de cellules grises de la colonne ventrale de l'autre coté du plan médian, entre le canal central et la fissure médiane ventrale [82].

La plupart des lésions affectent les segments lombaires caudaux, sacrés et coccygiens et sont caractérisés par une hydromyélie, une syringomyélie, des méningocèles, une démyélinisation ou une nécrose nerveuse.

La sy*ringomyélie* est une accumulation de liquide céphalo-rachidien (LCR) à l'intérieur de la moelle épinière tandis que l'*hydromyélie* est une accumulation de LCR à l'intérieur du canal central qui est alors dilaté. Ces désordres peuvent découler d'une anomalie de pression du LCR dans le canal vertébral, d'un manque de parenchyme dans la moelle épinière ou être secondaires à une obstruction de la circulation du LCR due à des malformations vertébrales congénitales [82].

Un *méningocèle* est une protrusion des méninges en dehors du canal vertébral ^[6].

Ces malformations sont souvent associées à des anomalies vertébrales telles qu'une spina bifida ou une hypoplasie vertébrale [60].

Epidémiologie :

Cette malformation se rencontre plus fréquemment chez le Braque de Weimar et le Setter Irlandais bien que d'autres races puissent également être touchées ^[79; 82].

Chez les chats, ce sont les chats de l'île de Man qui paraissent plus fréquemment atteints [60].

Signes cliniques:

Les signes cliniques sont présents à la naissance, ils dépendent du site de la lésion.

Les plus fréquents sont une démarche sautillante des membres pelviens, une augmentation du polygone de sustentation, une ataxie ou une parésie, des déficits proprioceptifs et une incontinence urinaire et fécale d'origine neurogène [60; 79; 82]. Les réflexes patellaires sont normaux, le réflexe de flexion effectué sur un membre postérieur provoque souvent la flexion des deux membres pelviens [60; 79].

Une douleur vertébrale peut être présente, provoquée par l'étirement des racines des nerfs ou des méninges ^[82].

Souvent, une infection du tractus urinaire vient s'ajouter au tableau clinique [60].

Diagnostic:

Le diagnostic est d'abord épidémiologique et clinique [60].

Des radiographies sans préparation peuvent permettre de déceler des anomalies vertébrales alors qu'une myélographie permet l'identification des méningocèles ^[60].

Dans certains cas, le diagnostic peut nécessiter des techniques d'imagerie médicale telles que l'IRM ou le scanner, en particulier pour l'hydromyélie et la syringomyélie [82].

Traitement:

Les signes cliniques n'évoluent plus après la naissance, et dans le cas d'anomalies modérées, l'animal peut avoir une vie normale [82].

Dans le cas où une incontinence urinaire est présente, une antibiothérapie permet de traiter l'infection du tractus urinaire secondaire à l'incontinence. La vidange de la vessie par taxis externe peut permettre de limiter l'incontinence par trop-plein [60].

Lors *d'hydromyélie* ou de *syringomyélie*, l'intervention chirurgicale précoce consistant à décompresser la moelle épinière et rétablir un flux de LCR normal est idéale mais rarement possible [82].

Le traitement médical consiste à administrer de la prednisolone et de l'acétazolamide pour diminuer la pression du LCR ^[82].

6- Agénésie caudale

Définition:

L'agénésie caudale est une diminution du nombre de vertèbres coccygiennes parfois associée à une hypoplasie ou une absence des vertèbres sacrées.

Lésions associées :

D'autres anomalies telles qu'une spina bifida ou une syringomyélie sont fréquemment associées [68; 75; 94].

Epidémiologie :

Les malformations de la colonne vertébrale sacro-coccygienne sont plus fréquentes chez les chats de l'île de Man [68; 82].

Ces anomalies sont sous la dépendance d'un gène autosomal semi-létal dominant. Seuls les chats hétérozygotes naissent vivants et avec des degrés variables d'anomalies $^{[68;\,82]}$.

Les mâles semblent être plus touchés que les femelles [68].

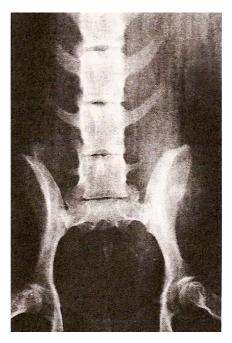
Chez le chien, cette anomalie est beaucoup plus rare. Un cas a cependant été décrit chez une chienne de race Pékinois ^[24].

Signes cliniques:

Les signes cliniques sont dus à une agénésie ou une dysgénésie de la moelle épinière caudale^[82].

On observe alors chez les animaux atteints une démarche bondissante ou rampante des membres pelviens, une incontinence urinaire et fécale et une constipation chronique.

L'examen neurologique est parfois modifié [24; 68; 82].


La palpation de la colonne vertébrale permet parfois de sentir l'absence des dernières vertèbres [24].

Lors d'agénésie caudale, les nerfs qui émergent normalement de S1, S2 et S3 (nerf honteux, fémoral, périnéal superficiel, rectal caudal, pelvien) sont remaniés. Ils n'émergent que de S1 ou de S1 et S2, provoquant une désorganisation des connections nerveuses. Or, les nerfs pelviens et honteux innervent le muscle détrusor et le sphincter urétral externe alors que le nerf rectal caudal issu du nerf honteux innerve les sphincters anaux interne et externe. Ainsi, il n'est pas étonnant d'observer une incontinence urinaire et fécale chez les animaux atteints [94].

Diagnostic:

La suspicion de la malformation repose d'abord sur les commémoratifs, l'anamnèse et l'examen clinique.

Les *radiographies sans préparation* permettent ensuite d'observer une hypoplasie ou une absence des vertèbres sacrées et une diminution du nombre voire l'absence de vertèbres coccygiennes (cf. Radiographie 22) [24; 68; 94]

Radiographie 22 : Agénésie caudale chez une chienne Pékinois. On note l'absence de vertèbre sacrée en arrière de S1.

Dickele et al [24].

La *myélographi*e, en incidence latéro-latérale, révèle une diminution du diamètre de la moelle épinière lombaire. Le cône dural se poursuit plus caudalement que chez un animal sain ^[94]. En incidence dorso-ventrale, l'image du cône dural est située plus caudalement que sur un chien normal de ce format. De plus, son extrémité prend une forme en bissac à la hauteur de la première vertèbre sacrée ^[94].

Traitement:

Il n'existe aucun traitement pour corriger cette anomalie. Un traitement symptomatique peut être entrepris mais le plus souvent, l'animal finit par être euthanasié ^[82].

B- Symptomatologie générale

Les affections médullaires peuvent entraîner des troubles moteurs, sensitifs et végétatifs ^[79]. L'incontinence urinaire peut être présente quelle que soit la localisation sur la moelle épinière, mais ce n'est généralement qu'une partie du tableau clinique ^[31].

Les symptômes urinaires ainsi que les symptômes associés sont différents selon la neurolocalisation de la lésion (cf. Tableau 1). On distinguera ainsi l'incontinence urinaire

avec une vessie de type motoneurone périphérique (MNP) ou une vessie de type motoneurone central (MNC).

Localisation de la lésion	Type de vessie	Symptômes associés	
C1-C5	MNC	Membres thoraciques : MNC	
		Membres pelviens : MNC	
C6-T2	MNC	Membres thoraciques : MNP	
		Membres pelviens : MNC	
T3-L3	MNC	Membres thoraciques : RAS	
		Membres pelviens : MNC	
L4-S2	MNC ou MNP	Membres thoraciques : RAS	
		Membres pelviens : MNP	

Tableau 1 : Symptômes observés en fonction de la localisation de la lésion sur la moelle épinière.

Dans toutes les malformations précédemment citées, c'est toujours l'association d'une instabilité rachidienne et d'une sténose du canal rachidien ou des foramens intervertébraux qui cause une compression et/ou un étirement de la moelle épinière à l'origine des signes cliniques observés [101].

Il n'est cependant pas rare que ces anomalies soient asymptomatiques.

1- Vessie de type MNP (motoneurone périphérique)

a- Etiologie

Les lésions responsables de vessie de type MNP sont localisées sur l'arc réflexe sacré. Ces lésions peuvent siéger dans la moelle épinière sur le segment S1-S3, sur le trajet des nerfs pelviens et des nerfs honteux internes, dans le plexus hypogastrique ou dans la paroi vésicale^[19].

b- Caractères de l'incontinence urinaire

Lors de vessie de type MNP, encore appelée vessie « autonome » ou vessie « flasque », l'animal présente une incontinence urinaire avec généralement une atonie vésicale et une vidange facile dues à l'aréflexie du détrusor et la perte de la fonction sphinctérienne [19; 95]. Cependant, tous les tableaux cliniques sont possibles, en fonction du nerf atteint. Par exemple, en cas de lésion du nerf pelvien sans lésion du nerf honteux, il y a une atonie vésicale mais le tonus du sphincter urétral externe est conservé d'où des difficultés à la vidange et une incontinence par trop-plein [19].

c- Symptômes associés

L'incontinence urinaire est souvent associée à d'autres signes cliniques. On peut ainsi observer une parésie des membres postérieurs, une incontinence fécale, une diminution de sensibilité de la région périnéale, une paralysie de la queue [19; 95].

2- Vessie type MNC (motoneurone central)

a- Etiologie

Sur un plan lésionnel, les vessies de type MNC sont, en théorie, la conséquence de lésions situées en amont du segment médullaire L1 chez le chien, L2 chez le chat. En pratique, le rapport des tonus sympathique et parasympathique étant en faveur de ce dernier, les vessies de type MNC sont toujours en rapport avec des lésions situées en amont de L7. Ainsi, il n'y a pas de levée d'inhibition du nerf honteux et le sphincter urétral reste toujours fermé ^[19].

b- Caractères de l'incontinence urinaire

Les vessies de type MNC, encore appelées vessies « spastiques », vessies « automatiques » ou vessies « spinales », sont caractérisées cliniquement par une incontinence urinaire à vessie pleine et sphincter fermé ^[19]. On peut alors noter la présence d'un globe vésical important, une difficulté voire une impossibilité de vidange vésicale. Les animaux urinent par trop-plein, lorsqu'on les manipule, lorsqu'ils marchent ou qu'ils changent de position ^[46; 95].

c- Signes cliniques associés

Les signes cliniques associés sont nombreux. Ils dépendent de la localisation de la lésion sur la moelle épinière (cf. Tableau 1)

Souvent, l'animal présente un déficit moteur progressif des membres pelviens allant jusqu'à la paralysie [36; 46; 95].

Lors d'anomalie cervicale, les symptômes de type MNC sont plus prononcés sur les membres postérieurs lorsque la lésion est dorsale ou latérale alors que l'ataxie et la parésie sont plus prononcées sur les membres antérieurs lorsque la lésion est centrale [82].

3- Syndrome de la queue de cheval

Définition:

La moelle épinière se termine au niveau de la 6^{ème} ou 7^{ème} vertèbre lombaire par le cône médullaire.

La queue de cheval est ainsi formée par l'ensemble des racines des nerfs médullaires les plus caudaux. Les nerfs concernés sont le nerf lombaire 7, les nerfs sacrés 1 à 3 et les nerfs coccygiens 1 à 5 ^[56].

Etiologie:

Le syndrome de la queue de cheval peut survenir suite à une compression, un étirement, un déplacement ou une malformation du canal vertébral à partir de la 6ème vertèbre lombaire en moyenne chez le chien, et à partir de la 7ème vertèbre lombaire chez le chat [56].

Signes cliniques:

- Troubles moteurs:

On observe une paralysie flasque, une parésie ou une simple diminution du tonus des muscles innervés par les nerfs atteints (nerfs glutéal crânial et caudal, sciatique, fibulaire commun, tibial, honteux et coccygiens). Une amyotrophie est présente selon les mêmes myotomes [56; 79]

- Troubles sensitifs:

Ils sont dus à une modification de la sensibilité des dermatomes correspondant aux nerfs précédemment cités. Les sensations de fourmillement engendrent souvent un léchage de la région, qui peut aller jusqu'à l'apparition de plaies auto-entretenues dont les localisations préférentielles sont la queue, le périnée et les extrémités des membres postérieurs [56; 79].

- Troubles végétatifs :

Ils se traduisent par une incontinence urinaire et fécale et sont la conséquence de la paralysie flasque des sphincters et des troubles parasympathiques.

Sous la dépendance du système parasympathique, une atonie vésicale et colorectale vient compliquer les incontinences urinaire et fécale sphinctériennes.

Les lésions du système sympathique engendrant des modifications du tonus vasculaire, de la sécrétion sudoripare et de l'érection pileuse peuvent également être observées. Les troubles trophiques qui en résultent aggravent les plaies consécutives aux déficits proprioceptifs.

Des cystites récurrentes, un mégacôlon peuvent être des signes d'appel [56; 79].

C- <u>Traitement</u>

La possibilité d'un traitement doit être évaluée au cas par cas, en fonction de la nature et de la sévérité des anomalies présentes. Nous allons quand même présenter ici les différents traitements envisageables pour améliorer la fonction urinaire en fonction du type de lésion.

1- Lésions type MNP

Chez un animal présentant une vessie de type MNP, une vidange urinaire par taxis ou par sondage aseptique doit être réalisée au moins trois fois par jour. Des analyses et cultures urinaires sont mises en œuvre régulièrement afin de contrôler l'apparition d'une infection du tractus urinaire. De la vaseline est appliquée en région périvulvaire de manière à prévenir les lésions cutanées dues à l'écoulement d'urine [36].

Le *traitement spécifique* consiste en l'utilisation d'un cholinergique seul ou en association avec un α -bloquant.

Le *cholinergique* utilisé est le bétanéchol (Urécholine®), à la posologie de 2,5 à 25mg/animal trois fois par jour PO chez le chien, 2,5 à 5 mg/animal trois fois par jour PO chez le chat. Il augmente la contractilité du muscle détrusor.

Les effets secondaires du bétanéchol sont l'hypersalivation, les vomissements, la diarrhée et les douleurs abdominales. Ces signes sont généralement observés une heure après administration du bétanéchol, leur présence doit conduire à une diminution de la posologie [36]. L' α -bloquant utilisé est l'alfuzosine à la posologie de 0,1 mg/kg/j en trois prises.

2- Lésions type MNC

Chez un animal présentant une vessie de type MNC, une vidange urinaire par sondage aseptique doit être réalisée au moins trois fois par jour. Le volume résiduel vésical après vidange doit être contrôlé. Des analyses et cultures urinaires sont mises en œuvre régulièrement afin de contrôler l'apparition d'une infection du tractus urinaire. De la vaseline est appliquée en région périvulvaire de manière à prévenir les lésions cutanées dues à l'écoulement d'urine [36].

Le *traitement spécifique* consiste en l'utilisation de cholinergique en association avec un α -bloquant ou un myorelaxant.

Le *cholinergique* utilisé est le bétanéchol, l' α -bloquant utilisé est l'alfuzosine, comme décrit précédemment.

Le *myorelaxant* utilisé est le diazépam (Valium®) à la posologie de 2 à 10 mg/animal trois fois par jour chez le chien, 2 à 5 mg/animal trois fois par jour chez le chat.

L'incontinence urinaire du jeune chez les carnivores domestiques

CHAPITRE 3: ETUDE DE LA CAUSE LA PLUS FREQUENTE D'INCONTINENCE URINAIRE CHEZ LE JEUNE CARNIVORE DOMESTIQUE : L'ECTOPIE URETERALE

L'ectopie urétérale est la principale anomalie congénitale du bas appareil urinaire chez le chien. Elle est plus rarement observée chez le chat. Dans les deux cas, cette malformation conduit à une incontinence urinaire et son traitement relève d'une cure chirurgicale [20; 38].

I- DEFINITION

L'ectopie urétérale est une anomalie urinaire caractérisée anatomiquement par un abouchement anormal d'un ou des deux uretères en aval de leur lieu d'abouchement normal dans le trigone vésical [20; 38; 65; 85; 98; 104]. En effet, les uretères normaux pénètrent dans la vessie au niveau de sa surface dorso-latérale caudale pour s'ouvrir dans le trigone vésical après un court chemin intra-mural [72].

Dans la majorité des cas, cette anomalie conduit à une incontinence urinaire.

II- PATHOGENIE

A- Rappels du développement normal des uretères [7; 98]

Trois reins se succèdent au cours de l'embryologie des carnivores domestiques : le pronephros, le mésonéphros et le métanéphros. Le pronephros et le mésonéphros disparaissent ensuite et seul le conduit mésonéphrique persiste pour donner le canal déférent chez le mâle.

Le conduit métanéphrique, destiné à donner l'uretère, est dérivé d'un bourgeon de la partie distale du conduit mésonéphrique, près du cloaque.

Les conduits mésonéphrique et métanéphrique ont donc un conduit excréteur commun qui s'ouvre dans la vessie (cf. Figure 26-A).

Puis le conduit métanéphrique continue à croître en direction du métanéphros, futur rein.

Lorsque la vessie se développe, le conduit excréteur commun est absorbé et les conduits mésonéphrique et métanéphrique acquièrent des ouvertures individuelles (cf. Figure 26–B).

Avec la poursuite de la croissance, le conduit mésonéphrique est déplacé caudalement et s'ouvre par une proéminence sur la paroi dorsale de l'urètre alors que l'ouverture urétérale reste dans la vessie (cf. Figure 26–C).

B- Développement d'un uretère ectopique [98]

1- <u>Uretère ectopique situé en aval sur le tractus urinaire</u>

Le développement d'un uretère ectopique au cours de l'embryogenèse est dû à une origine anormale du conduit métanéphrique sur le conduit mésonéphrique [100; 104].

Si le conduit métanéphrique prend origine plus crânialement sur le conduit mésonéphrique, il n'établira pas une ouverture indépendante dans la vessie (cf. Figure 26–A et B).

Le conduit métanéphrique sera emporté caudalement avec le conduit mésonéphrique pour s'ouvrir dans le col vésical, l'urètre ou le canal déférent chez le mâle (cf. Figure 26–C).

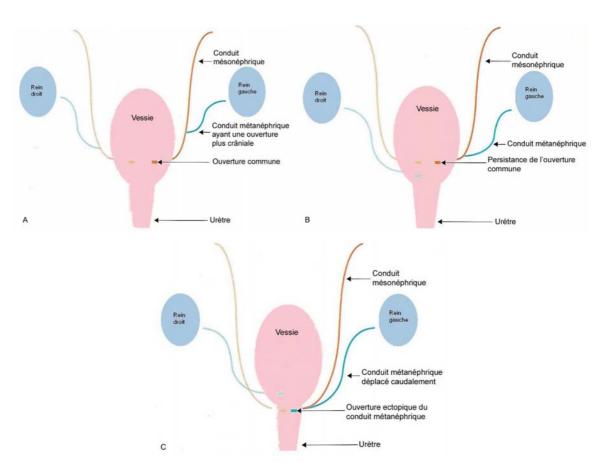


Figure 26 : Développement d'un uretère ectopique à gauche.

A et B: si le conduit métanéphrique prend son origine plus crânialement que lors du développement normal sur le conduit mésonéphrique, il n'établira pas une ouverture indépendante dans la vessie. C: le conduit métanéphrique est alors déplacé caudalement avec le conduit mésonéphrique pour s'ouvrir dans l'urêtre ou le canal déférent.

On peut observer par comparaison le développement normal de l'uretère droit.

D'après Sutherland-Smith et al [98].

Une croissance anormale du sinus uro-génital empêchant la migration crânio-dorsale du canal métanéphrique ou une apparition trop tardivement après la vessie du bourgeon métanéphrique conduisent au même résultat [104].

2- <u>Uretère ectopique vaginal</u>

Les abouchements urétéraux dans le vagin s'expliquent par le fait que le vagin dérive non seulement des canaux de Müller mais également des conduits mésonéphriques et du sinus urogénital. Un défaut de fusion des conduits mésonéphriques avec le sinus uro-génital pourrait ainsi produire un uretère ectopique vaginal (cf. Figure 22, p. 93) [11; 67; 104].

3- <u>Uretère ectopique utérin</u>

En revanche, l'explication d'un abouchement urétéral dans l'utérus n'est pas claire car il provient uniquement des canaux de Müller.

Une hypothèse propose l'union des structures mésonéphriques dans les canaux de Müller ^[98]. La dégénérescence de la partie distale d'un conduit mésonéphrique pourrait résulter en un uretère ectopique s'ouvrant directement dans les structures dérivant des canaux de Müller ^[67]. Il est également possible qu'une communication entre un uretère et l'utérus ne s'établisse que lors d'anomalies associées des conduits mésonéphriques et métanéphriques et des canaux de Müller, ce qui expliquerait le faible nombre de cas ^[67].

III- LESIONS

On distingue plusieurs types d'uretères ectopiques. Ainsi, dans sa portion vésicale, le trajet de l'uretère ectopique peut être intra-mural (dans la paroi vésicale) ou extra-mural (à l'extérieur de la paroi vésicale) [20].

Les uretères normaux pénètrent dans la vessie au niveau du trigone vésical par un court chemin intra-mural (cf. Figure 27) [72].

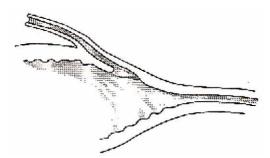


Figure 27 : Abouchement normal de l'uretère au niveau du trigone vésical.

Magnien [72].

A- <u>Uretères ectopiques extra-muraux</u>

L'uretère ectopique extra-mural court-circuite complètement la vessie (cf. Figure 28) [72; 85].

Chez le chat, c'est le type d'uretère ectopique le plus fréquent [46; 48; 72].

Chez le chien, ce type d'uretère est peu fréquent. De plus, il serait surdiagnostiqué alors qu'il est en réalité très rare [77; 99].

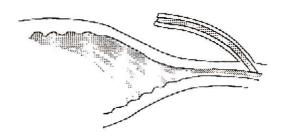


Figure 28 : <u>Uretère ectopique extra-mural</u>.

Magnien [72].

B- <u>Uretères ectopiques intra-muraux</u>

Chez le chien, c'est le type d'uretère ectopique le plus fréquemment rencontré [72; 100].

1- Simple

L'uretère ectopique intra-mural simple pénètre normalement dans la paroi vésicale mais n'aboutit pas à un orifice normal dans le trigone vésical. Il se poursuit au delà du trigone dans l'épaisseur de la paroi vésicale, entre la musculeuse et la sous-muqueuse, pour s'ouvrir distalement (cf. Figure 29) [11; 72; 100].

Il peut aussi ne pas avoir d'orifice terminal et est alors associé à une hydronéphrose et un méga-uretère $^{[72;\,100]}$.

L'uretère peut aussi avoir de multiples fenestrations au niveau de l'urètre avant son abouchement définitif [11].

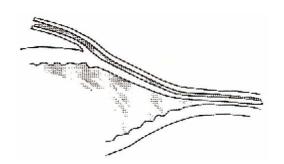


Figure 29 : <u>Uretère ectopique intra-mural simple</u>.

Magnien [72].

2- Ouverture urétérale double

On les appelle aussi uretère ectopique à deux branches [72].

L'uretère ectopique avec ouverture urétérale double s'ouvre dans le trigone vésical de manière normale mais une deuxième branche continue sous la muqueuse pour se terminer en position ectopique (cf. Figure 30) [72; 85].

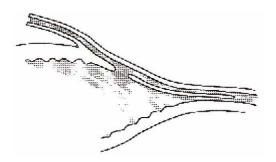


Figure 30 : Uretère ectopique avec ouverture urétérale double. Magnien [72].

3- Gouttière urétérale

On les appelle aussi uretère ectopique cavitaire [72].

L'uretère ectopique avec gouttière urétérale traverse la séreuse et la musculeuse normalement et s'ouvre dans la lumière vésicale à l'endroit normal ou un peu plus distalement. Néanmoins, il se poursuit par une structure incomplète formant un sillon au-delà du trigone et du sphincter vésico-urétral (cf. Figure 31). L'urine s'écoule donc par ce sillon et passe directement dans l'urètre [72].

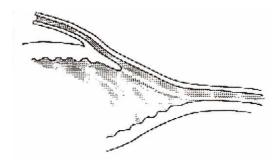


Figure 31 : <u>Uretère ectopique avec gouttière urétérale</u>.

Magnien [72].

C- <u>Lieu d'abouchement des uretères ectopiques</u>

1- Chez le chien

Chez la femelle, l'abouchement de l'uretère ectopique est variable : il peut se situer sur le col vésical, l'urètre mais aussi le vagin ou beaucoup plus rarement sur le col de l'utérus ou l'utérus [20; 38; 46; 67; 72; 85; 100].

Chez le mâle, l'uretère ectopique peut se terminer dans le col vésical, l'urètre prostatique, les canaux déférents ou les vésicules séminales [38; 72].

2- Chez le chat

Chez le chat, l'uretère ectopique se termine majoritairement dans l'urètre, parfois dans le vagin [46; 48; 72].

D- Anomalies associées

D'autres anomalies urinaires associées à l'ectopie urétérale sont fréquemment présentes ^[98].

On peut parfois rapporter des **anomalies de forme et de taille du rein ipsilatéral**, telles

qu'une hypoplasie ou une agénésie rénale [20; 52; 85].

Plus rarement, ce sont des **anomalies vésicales** qui sont notées, comme par exemple une vessie pelvienne, l'aplasie ou l'hypoplasie vésicale ou l'absence de col vésical [20; 52; 66; 72; 85].

Des urétérocèles sont parfois observées au lieu d'abouchement de l'uretère ectopique.

Des **anomalies fonctionnelles**, en particulier des anomalies vésicales ou urétérales ne sont pas exceptionnelles. L'incompétence du sphincter urétral est ainsi souvent associée à l'ectopie urétérale [20; 52; 85].

Enfin, une **persistance de l'hymen** ou une **sténose vestibulo-vaginale** sont des découvertes fréquentes [85].

Il est important de diagnostiquer et de prendre en compte ces anomalies pour l'indication opératoire et le pronostic à long terme [72].

E- Affections secondaires

L'ectopie urétérale peut provoquer des affections secondaires telles qu'une hypoplasie vésicale, une cystite, une pyélonéphrite, un méga-uretère ou une hydronéphrose [48; 50; 52; 72; 84; 85]

1- Hypoplasie vésicale

Lors d'ectopie urétérale, la vessie ne reçoit pas la totalité du volume urinaire puisqu'une partie passe directement dans l'urètre ou dans le vagin, en particulier lors d'affection bilatérale. Elle peut donc présenter un défaut de développement de sa compliance et de sa taille [52; 65].

2- Méga-uretère et hydronéphrose

Souvent, les uretères ectopiques sont anormalement dilatés, on parle alors de méga-uretère. La dilatation est souvent plus marquée dans la partie distale de l'uretère mais il peut aussi être dilaté sur toute sa longueur [20; 50].

Le méga-uretère peut être la conséquence d'une obstruction partielle ou intermittente au niveau de l'orifice urétéral, lorsque l'uretère s'abouche dans le vagin, ou qu'il présente un long trajet intra-mural ^[3; 52; 77]. La présence d'une infection bactérienne ou d'un péristaltisme urétéral anormal pourrait également contribuer à la dilatation urétérale chez certains patients ^[52; 77].

L'hydronéphrose se développe selon le même mécanisme [3].

3- Pyélonéphrite

La pyélonéphrite résulte d'une infection ascendante, favorisée par une anomalie de fonctionnement urétéral ^[52].

L'incontinence urinaire du jeune chez les carnivores domestiques

4- Autres infections

Cette incontinence s'accompagne parfois, *chez la femelle*, de pyodermite vulvaire, de vulvite ou de vaginite secondaires à l'humidité persistante de la région périvulvaire [20; 52; 72; 98].

Dans les deux sexes, des complications d'infections urinaires à caractère récidivant sont fréquentes, elles ont été rapportées dans 64% des cas ^[20; 77; 97; 98]. L'origine de l'infection serait un reflux depuis l'urètre ou le vagin jusqu'à la vessie. De plus la présence d'une vaginite augmente la contamination de la région périnéale ^[97].

IV- EPIDEMIOLOGIE

A- Fréquence

La fréquence réelle de l'ectopie urétérale chez les carnivores domestiques est inconnue, elle a cependant été estimée entre 0,016 et 0,045% ^[11]. Cette anomalie est donc rare même si elle est la principale anomalie congénitale du bas appareil urinaire chez le chien ^[20; 41; 72; 104]. Dans une étude réalisée par Holt sur 221 jeunes chiens référés pour incontinence urinaire congénitale, l'ectopie urétérale représentait 52% des cas, dont 90% concernaient des femelles^[46].

Elle est plus rarement observée chez le chat [20; 41; 72; 104].

B- Type d'uretère ectopique

1- Caractère unilatéral ou bilatéral

Chez le chien, l'ectopie urétérale est unilatérale dans 68 à 80% des cas [50; 52; 72; 85].

Chez le chat, les ectopies unilatérales et bilatérales surviennent à fréquence égale [41; 48; 72].

2- Type de lésion

Chez le chien, on observe préférentiellement des uretères ectopiques intra-muraux ^[41; 77; 100]. Certains auteurs pensent même que l'ectopie urétérale extra-murale est surdiagnostiquée à partir des radiographies chez le chien mais qu'elle est en réalité très rare ^[77; 97; 99]. Dans l'étude de Holt et Moore sur 175 chiens, 100% présentaient des uretères ectopiques intra-muraux ^[52].

Les uretères ectopiques avec ouverture double et avec gouttière urétérale sont rares [52].

Dans l'espèce féline, les uretères ectopiques extra-muraux sont majoritaires [41; 52; 77; 100].

3- Anomalies associées

D'autres anomalies du tractus uro-génital sont associées à l'ectopie urétérale dans 70% des cas, les plus fréquentes étant le méga-uretère et l'hydronéphrose [52].

C-Sexe

Chez le chien, l'ectopie urétérale affecte principalement les femelles : celles-ci représentent 89 à 94% des chiens atteints [20; 39; 52; 72; 100].

Cependant, il est probable qu'une partie des chiens mâles atteints d'ectopie urétérale ne présentent aucun signe clinique en raison de la longueur supérieure de leur urètre, qui permettrait un reflux de l'urine dans la vessie quand l'uretère s'abouche dans la partie proximale de l'urètre [98].

Chez le chat en revanche, il n'existe aucune prédisposition de sexe [20; 48].

D-Age

Le signe d'appel de l'ectopie urétérale étant l'incontinence urinaire, symptôme facilement observable par le propriétaire, son diagnostic est souvent précoce [38].

Dans la très grande majorité des cas, ces troubles sont observés chez des animaux jeunes, après le sevrage, mais des animaux de tout âge peuvent être atteints [20; 52; 84].

L'anomalie est diagnostiquée *chez le chien* en moyenne à l'âge de 10 mois ^[52; 98; 104]. Néanmoins, chez les mâles, la moyenne d'âge au moment du diagnostic est de 24 mois ^[98]. *Chez le chat*, l'anomalie est mise en évidence plus tardivement ^[48].

E-Races prédisposées

Chez le chien, l'ectopie urétérale est observée avec une prévalence plus élevée dans certaines races : le Siberian Husky, le Terre-Neuve, le Briard, le Bouledogue anglais, le Labrador, le Golden retriever, le Caniche, le West Highland White Terrier, le Skye Terrier et le Fox Terrier [20; 39; 52; 98; 100].

Chez le chat, aucune prédisposition raciale n'a été mise en évidence [41; 48].

F- <u>Hérédité</u>

Bien que les prédispositions raciales soient évidentes *chez le chien*, le caractère héréditaire de l'ectopie urétérale n'est que suspecté ^[20; 52; 97; 104].

Il est tout de même conseillé de retirer les animaux atteints de la reproduction [20].

Chez le chat, le nombre de cas étant faible, il est difficile de conclure sur les mesures d'éradication à prendre ^[20].

Cette anomalie doit être considérée comme un vice caché antérieur à la vente et, à ce titre, entraîne une action en garantie [20].

V- CLINIQUE

A- Incontinence urinaire

1- Signe d'appel

L'incontinence urinaire est le signe clinique d'appel de cette malformation [20].

Cependant elle peut être absente, en particulier chez le mâle, lorsque l'uretère s'abouche dans la partie proximale de l'urètre et que la pression et la résistance dans la partie distale de l'urètre permettent le reflux de l'urine dans la vessie. Ceci est donc à l'origine d'un sous-diagnostic chez le mâle, et pourrait expliquer la prévalence plus importante de l'affection chez les femelles [20; 72; 98].

2- Pathogénie

distalement au sphincter urétral [77].

Lors d'uretère ectopique intra-mural, l'incontinence est due à l'abouchement urétéral en aval du sphincter urétral et/ou à l'interruption mécanique de la musculature sphinctérienne par la tunnellisation de l'uretère ectopique sous la muqueuse du col vésical et de l'urètre [77; 99].

Lors d'uretère ectopique extra-mural, l'incontinence est le résultat de l'abouchement urétéral

3- Caractéristiques de l'incontinence

Lors d'ectopie urétérale, l'incontinence est le plus souvent **permanente** mais peut aussi être **intermittente**. Elle est présente depuis la naissance ou le sevrage [20; 50; 98].

Son **intensité** n'a pas de corrélation avec le caractère unilatéral ou bilatéral de l'anomalie ni la localisation de l'orifice urétral [11; 77].

Elle est **accompagnée ou non de mictions normales**. En effet, dans le cas où l'anomalie est unilatérale, des mictions normales sont observées car le remplissage de la vessie s'effectue par l'uretère controlatéral ^[20; 46; 85].

Par contre, si l'anomalie est bilatérale, l'animal est souvent incapable d'uriner volontairement. Il arrive cependant qu'un remplissage rétrograde de la vessie autorise des phases d'actes volontaires de miction, souvent par petits volumes [20; 46; 85].

B- Signes cliniques associés

L'examen neurologique complet ne présente aucune anomalie et permet d'éliminer une cause neurogène de l'incontinence ^[85].

L'examen externe de l'animal ne présente généralement aucune anomalie, sauf une **humidité** en région péri-vulvaire ou préputiale [50; 52; 98; 104].

Cette incontinence s'accompagne parfois, chez la femelle, de **pyodermite vulvaire**, de **vulvite** ou de **vaginite** secondaire à l'humidité de la région périvulvaire [20; 52; 72; 98; 104].

Dans les deux sexes, des complications **d'infection urinaire** à caractère récidivant sont fréquentes, elles ont été rapportées dans 64% des cas ^[20; 98]. Des signes tels qu'une dysurie, une hématurie, une strangurie ou une pollakiurie sont alors observables ^[104].

La palpation abdominale peut révéler la présence d'une **vessie de petite taille,** beaucoup plus rarement une corne utérine dilatée si l'uretère s'abouche dans l'utérus ^[85].

VI- DIAGNOSTIC

Le diagnostic d'ectopie urétérale est d'abord un diagnostic de suspicion fondé sur les commémoratifs, l'anamnèse et l'examen clinique.

Les principaux examens complémentaires mis en œuvre sont ensuite les techniques radiographiques avec produit de contraste ainsi que l'échographie.

Il est essentiel de rechercher d'éventuelles malformations associées de l'appareil uro-génital, les plus fréquentes étant le méga-uretère, l'hydronéphrose, l'hypoplasie vésicale et les anomalies vestibulo-vaginales [3].

A- Commémoratifs, anamnèse et examen clinique

Le principal signe de l'ectopie urétérale est une incontinence urinaire. Mais le motif de consultation peut aussi être une cystite récidivante, un comportement de malpropreté, une dermite périvulvaire, etc... [3; 20; 103].

Les caractéristiques de l'incontinence doivent être recueillies avec précision.

Un examen neurologique complet permet d'éliminer une cause neurogène de l'incontinence.

L'examen clinique de l'animal doit être minutieux, l'ombilic est inspecté de manière à éliminer une persistance du canal de l'Ouraque. D'éventuels signes de dermatite, vulvite, vaginite ou cystite sont recherchés.

Le vagin peut également être observé directement à l'aide d'un vaginoscope. Les plis de la muqueuse rendent néanmoins souvent l'examen peu concluant [103].

Diagnostic différentiel (cf. annexe):

Chez l'animal jeune, l'ectopie urétérale représente la principale hypothèse diagnostique lors d'incontinence urinaire [20]. L'incompétence du sphincter urétral est la 2^{ème} cause d'incontinence urinaire chez le jeune. Les autres anomalies congénitales de l'appareil urogénital sont moins fréquentes.

B- Examens complémentaires diagnostiques

Les méthodes diagnostiques de l'ectopie urétérale sont essentiellement basées sur les techniques radiographiques avec produit de contraste, telles que l'urographie intraveineuse, la cystographie simple ou double contraste, l'urétrographie et la vagino-urétrographie rétrograde^[100]. Ces examens aboutissent au diagnostic d'ectopie urétérale dans 62 à 77% des cas, et permettent de détecter des anomalies associées dans 70 à 90% des cas ^[63; 98].

L'échographie abdominale, l'endoscopie, la tomodensitométrie ainsi que l'exploration chirurgicale sont également une aide précieuse.

Cependant, il n'existe pas d'examen idéal pour détecter l'ectopie urétérale. Dans toutes les méthodes, la petite taille des structures rend le diagnostic très difficile. Pour optimiser les chances de diagnostic, le mieux est de combiner différentes procédures [3; 63].

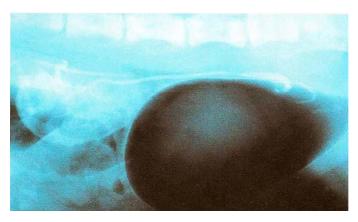
1- L'urographie intraveineuse

a- Intérêts

L'examen complémentaire de choix pour le diagnostic d'une ectopie urétérale est l'urographie intra-veineuse, dont la sensibilité est augmentée lorsqu'elle est complétée simultanément par une pneumocystographie [20; 98].

Cet examen peut permettre d'identifier un orifice urétéral anormal, et de préciser la localisation, la taille et la morphologie des reins, des uretères et de la vessie [72; 85; 98].

La technique est décrite dans l'annexe 1.

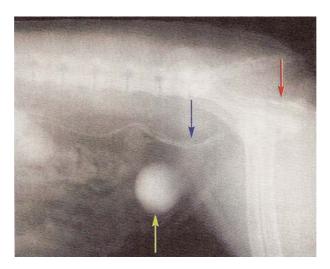

b- Critères diagnostiques

Dans tous les cas, des radiographies sans préparation sont réalisées préalablement. Elles permettent d'évaluer la taille, la forme et la position des reins et de la vessie, et éventuellement de détecter des calculs radio-opaques [98].

♦ Forme de la jonction urétéro-vésicale :

Dans son trajet normal, l'uretère présente une jonction urétéro-vésicale en forme de « J » ou de crochet (cf. Radiographie 23). Un effacement de cet angle, transformé en ligne droite, est très suggestif d'une ectopie même si la terminaison exacte de l'uretère ne peut être observée (cf. Radiographie 24) [72; 85; 98].

Selon certains auteurs, l'utilisation de cette méthode permet le diagnostic de l'ectopie dans 76% des cas ^[98]. D'autres pensent qu'il n'y a aucune corrélation entre la forme de la jonction urétéro-vésicale et la présence d'une ectopie ^[11].



Radiographie 23 : Image radiographique normale de la jonction urétéro-vésicale.

Les deux uretères sont fins ; après une inflexion crâniale en forme de J,

ils s'abouchent dans la région du trigone vésical.

Pelerin et Witz [85].

Radiographie 24 : <u>Uretère ectopique bilatéral observé sur une urographie intraveineuse.</u>
On remarque l'absence du « J » au niveau de la jonction urétéro-vésicale (flèche du milieu).
Du produit de contraste est observé dans la vessie, dû à un flux rétrograde (flèche de gauche) et dans le vagin (flèche de droite).

Sutherland-Smith et al [98].

♦ Identification directe du trajet de l'uretère :

Dans certains cas, il est possible d'observer l'uretère passant le long de la paroi dorsale de la vessie, jusqu'en aval du trigone vésical (cf. Radiographie 25) [63].

Radiographie 25 : <u>Uretère ectopique extra-mural visible sur une urographie intraveineuse.</u>

L'uretère gauche passe dorsalement à la vessie et s'abouche
dans la partie proximale de l'urètre (flèches).

Holt et al [50].

♦ Autres critères de suspicion :

Les autres critères indirects de suspicion sont la présence d'un méga-uretère, d'une hydronéphrose ou d'une urétérocèle ; la partie distale de l'uretère est alors dilatée [50; 72; 85].

c- Informations complémentaires

L'urographie intraveineuse apporte des renseignements complémentaires sur les reins, les uretères et la vessie [72; 98; 104].

Les reins :

Il convient de toujours regarder la taille et la forme du rein du coté de l'uretère ectopique.

L'anomalie la plus fréquente est l'hydronéphrose ^[20]. La taille du pelvis rénal et de ses récessus n'excède pas 1 à 2 mm de diamètre chez le chien normal ^[98]. Lors d'hydronéphrose, on observe une dilatation pelvienne et des récessus pelviens, un amincissement de la médullaire et de la corticale rénales et une dilatation urétérale ^[92].

Les uretères :

Souvent, l'uretère ectopique apparaît dilaté, soit dans sa portion distale, soit sur l'ensemble de son trajet. On parle alors de méga-uretère [20].

Chez le chien normal, la partie proximale de l'uretère ne dépasse pas 2 à 3 mm de diamètre^[98]. On considère que l'uretère est dilaté si son diamètre est supérieur à 0,09 fois la longueur de la 2^{ème} vertèbre lombaire, soit environ 3 mm ^[77].

La vessie:

La vessie peut présenter certaines anomalies de position, en particulier être située plus caudalement, lors de vessie pelvienne [20].

Néanmoins, la taille et la forme de la vessie restent difficiles à évaluer lors d'UIV car on ne contrôle pas la distension de la vessie tandis qu'on a tendance à trop la distendre lors de pneumocystographie ^[98].

d- Limites

La détermination du site d'abouchement de l'uretère est souvent délicate sur les radiographies en raison de l'accumulation de produit de contraste dans la vessie. Les uretères intra-muraux, en particulier, sont plus difficiles à détecter que les uretères extra-muraux. C'est pourquoi il est conseiller de pratiquer, simultanément à l'urographie intraveineuse, une pneumocystographie afin de mieux surligner ces uretères [11; 72; 100]. Souvent, même s'il est possible de conclure à l'existence d'un uretère ectopique, sa localisation exacte ne peut être précisée [38; 62; 104].

Selon certains auteurs, la forme de la jonction urétéro-vésicale, droite ou en forme de J, n'a aucune corrélation avec la présence d'une ectopie urétérale [11].

Il est normal qu'un segment de l'uretère ne contienne pas de produit de contraste en raison des **ondes de péristaltisme**. Cependant, la répétition des radiographies doit permettre d'observer la totalité des uretères [63; 98].

Parfois, la **superposition des uretères avec les structures environnantes** empêche leur bonne visualisation ^[62; 63; 98]. Entre autres, des anomalies importantes d'un des uretères peuvent nuire à la bonne visualisation du 2^{ème} si des vues obliques ne sont pas réalisées ^[11].

Une **bonne préparation de l'animal** est indispensable afin d'assurer la vacuité du tube digestif ^[11].

L'augmentation de l'incontinence pendant l'anesthésie provoque l'écoulement de produit de contraste dans le vestibule, la région périnéale et sur la table de radiographie compliquant la lecture des clichés [11].

Enfin, cet examen nécessite une **anesthésie générale** et les **complications**, même si elles restent rares, existent ^[62].

e- Conclusion

Même si l'urographie intraveineuse reste l'examen de choix pour le diagnostic d'ectopie urétérale, elle ne permet pas toujours de confirmer le diagnostic ni de localiser la jonction urétéro-vésicale [11; 98].

Par conséquent, si l'ectopie urétérale n'est pas confirmée par l'UIV sur un animal fortement suspect, on peut réaliser d'autres examens complémentaires comme une vaginocystographie rétrograde chez la femelle et une urétrocystographie rétrograde chez le mâle [72].

2- L'urétrocystographie rétrograde

L'urétrocystographie rétrograde peut permettre de préciser le lieu d'implantation des uretères dans certains cas (cf. Radiographie 26)^[20].

Cependant, son intérêt est limité par la présence du cathéter dans la lumière urétrale, qui peut cacher ou obstruer un orifice urétéral ectopique [77; 98].

La technique est décrite dans l'annexe 3.

Radiographie 26 : <u>Uretère ectopique intra-mural simple visualisé suite à une urétrographie</u> rétrograde chez un chien mâle.

La partie distale de l'uretère pénètre dans la vessie et se poursuit dans l'épaisseur de la paroi vésicale pour se terminer dans l'urètre.

Taney et al [100].

3- La vaginocystographie rétrograde

a- Intérêts

Une vaginocystographie rétrograde est un examen très utile pour préciser le lieu et l'aspect de l'implantation des uretères, la totalité de l'urètre, et les contours du vagin [20; 77; 98].

En effet, contrairement à l'urétrographie rétrograde, aucun cathéter n'est placé dans la lumière urétrale ^[98].

Il est conseillé de faire des clichés des deux profils, ventro-dorsales voire obliques [49; 50]. La technique est décrite dans l'annexe 3.


b- Critères diagnostiques

♦ <u>Vaginocystographie normale :</u>

Sur une vaginocystographie rétrograde normale, les contours des structures sont lisses, le vagin se rétrécit avant sa jonction avec le vestibule, l'utérus ne contient pas de produit de contraste. L'urètre s'élargit dans son tiers caudal [42; 49].

♦ Vaginocystographie d'un uretère ectopique :

Cet examen permet de détecter des uretères ectopiques s'ouvrant dans le vagin ou l'urètre (cf. Radiographie 27) [42; 49].

Radiographie 27 : <u>Uretère ectopique visualisé suite à une vaginocystographie rétrograde chez une chienne.</u>

L'uretère ectopique gauche passe dorsalement à la vessie et à la partie proximale de l'urètre pour s'aboucher dans la partie distale de l'urètre (flèches).

Lamb [62].

c- Informations complémentaires

Des anomalies associées peuvent aussi être mises en évidence : une fistule uro-vaginale, un septum vaginal, une sténose vestibulo-vaginale ou une vessie pelvienne [42; 49].

d- Limites

Des **artéfacts** produits par des bulles d'air introduites par le cathéter peuvent être confondus avec des septums vaginaux ^[49]. De plus, en l'absence d'anesthésie générale, une contraction vestibulaire peut ressembler à une sténose vaginale ^[49]

La **superposition des structures** peut également gêner le diagnostic et nécessite la multiplication des clichés en différentes incidences ^[49].

Les **complications** de cet examen sont la rupture d'un organe du tractus uro-génital et le développement d'une cystite ^[42].

4- L'échographie abdominale

a- Intérêts

L'échographie abdominale est une méthode utile et pratique ^[98]. En effet, la vessie est une structure facilement visualisable par échographie en raison de sa position superficielle et de la bonne transmission des ultrasons par l'urine ^[63].

Dans des mains expérimentées, l'échographie permet d'obtenir des résultats très similaires aux techniques radiographiques avec produit de contraste. Les images des uretères normaux sont même plus facilement visibles par échographie (100% des cas) [63].

En outre, cette technique est plus rapide et évite une anesthésie générale et la réalisation de nombreux clichés [62; 63; 98].

b- Critères diagnostiques

Echographie normale:

Sur une *coupe transversale* du trigone vésical, les jonctions urétéro-vésicales sont visibles comme de petites surélévations de la muqueuse vésicale sur la paroi dorsale de la vessie (cf. Figure 32–A) [62; 63].

Sur une *coupe longitudinale* de la vessie, on peut parfois suivre le trajet de l'uretère, visible comme un conduit à paroi mince, le long de la vessie jusqu'à son insertion au niveau du trigone vésical, même si le plus souvent, son faible diamètre empêche sa visualisation par échographie (cf. Figure 32–B) [62; 98].

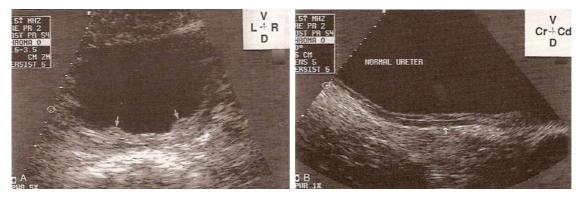


Figure 32 : Images échographiques normales de la jonction urétéro-vésicale et des uretères.

A : coupe transversale, les flèches indiquent les jonctions urétéro-vésicales,

B : coupe longitudinale, la flèche montre la partie distale de l'uretère.

Lamb [62].

Les **jets urétéraux** sont semblables à une flamme échogène qui jaillit périodiquement de la jonction urétéro-vésicale (cf. Figure 33). Ils correspondent au flux d'urine provenant des uretères et sont visibles grâce à la différence d'échogénicité entre l'urine urétérale et vésicale^[62; 63; 98]. L'examen au Doppler n'est pas indispensable mais peut faciliter leur identification ^[62].

Figure 33 : <u>Image échographique d'un jet urétéral.</u>
Coupe transversale au niveau du trigone vésical permettant d'observer un jet urétéral (flèche).

Lamb ^[62].

Echographie d'un uretère ectopique :

Les critères diagnostiques d'un uretère ectopique sont l'absence de visualisation du jet urétéral au niveau du trigone vésical ou l'observation d'un uretère ectopique dilaté distalement au trigone vésical (cf. Figure 34) [98].

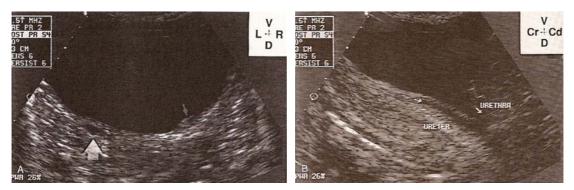


Figure 34 : Images échographiques de la partie distale d'un uretère ectopique.

A : coupe transversale du trigone vésical, la jonction urétéro-vésicale est normale à droite tandis qu'à gauche, on observe une structure ronde anéchogène sous la muqueuse vésicale.
B : coupe sagittale de l'uretère ectopique gauche qui passe le long de la paroi dorsale de la vessie et de l'urètre.

Lamb [62].

c- Informations complémentaires

Un examen échographique est très utile dans la détection d'éventuelles anomalies de l'appareil urinaire supérieur, telles qu'une pyélonéphrite, une hydronéphrose ou un mégauretère [63; 72; 98].

Il est également possible d'observer les ondes de péristaltisme et d'évaluer la capacité de contraction de l'uretère [38].

L'utilisation du **Doppler** amène d'autres informations par la mesure des paramètres du flux sanguin rénal ^[98]. Il est possible de mesurer l'index de résistivité rénale (IR) par la formule suivante ^[3; 62]:

IR = (vitesse systolique maximale – vitesse en fin de diastole) Vitesse systolique maximale

La valeur usuelle de l'index de résistivité rénal est de 0,55 à 0,72 chez un animal vigile ^[3; 62]. Une augmentation de cet index indique une résistance accrue au flux d'urine dans les uretères et permet d'évaluer la fonction rénale et de donner un pronostic ^[3].

d- Limites

La **superposition de structures osseuses** nuit au passage des ultrasons. Le bassin peut ainsi gêner la visualisation du trigone vésical en cas de vessie pelvienne [63; 98; 104].

La qualité de l'image est également diminuée chez un animal **obèse** [63].

Les **jets urétéraux** ne sont pas toujours visibles chez les chiens sains ou présentant une infection ou une obstruction urétérale.

De plus, leur localisation normale exacte n'est pas définie. Il faut donc effectuer un balayage de la partie distale de la vessie afin de les retrouver [63; 98]. Par conséquent, un flux d'urine rétrograde à partir d'un uretère ectopique peut être confondu avec un jet urétéral et amener à un défaut de diagnostic [62; 63].

Enfin, l'uretère ne mesurant que **quelques millimètres** de diamètre s'il n'est pas trop dilaté, il est parfois difficile à observer [62; 104].

e- Conclusion

L'échographie est une méthode diagnostique très intéressante, qui présente de nombreux avantages. Néanmoins, elle ne permet pas toujours le diagnostic d'ectopie urétérale ni la localisation de l'orifice urétéral. Pour un intérêt optimum, elle doit donc être utilisée parallèlement aux techniques radiographiques avec produit de contraste [11; 98].

5- L'endoscopie

a- Intérêts

L'utilisation de l'endoscopie vésicale et vaginale a considérablement amélioré le diagnostic et la classification de l'ectopie urétérale et des anomalies associées des orifices urétéraux, de la vessie, de l'urètre et du vagin [38; 72; 98].

Cet examen est indiqué pour confirmer les lésions du bas appareil urinaire suspectées lors des examens radiographiques et échographiques, tout particulièrement lorsqu'une exploration chirurgicale n'est pas justifiée [98].

b- Technique

Cet examen nécessite une anesthésie générale. Il ne peut être réalisé chez les animaux d'un poids inférieur à 3 kg [11; 77; 93; 98].

Chez la femelle, on utilise un endoscope rigide alors que l'examen du *mâle* nécessite l'emploi d'un endoscope flexible ^[77; 98].

Les chats mâles adultes peuvent subir une cystoscopie après réalisation d'une urétrostomie périnéale [77].

c- Critères diagnostiques

L'endoscopie permet d'observer la morphologie de la partie terminale de l'uretère, la localisation de l'orifice urétéral et le flux à travers cette ouverture. On peut également apprécier l'aspect de la paroi vésicale, de l'urètre et du vagin ^[98].

◆ Orifice urétéral :

L'endoscopie permet l'observation directe de la jonction urétéro-vésicale. Ainsi, lors d'uretère ectopique, cet orifice est observé dans l'urètre, le vagin (cf. Photo 10)...

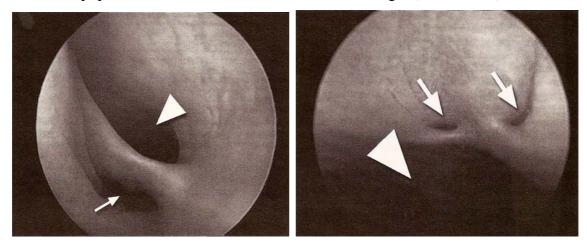


Photo 10 : Images endoscopiques d'abouchement des uretères dans l'urètre.

Flèche triangle : lumière urétrale, flèche simple : uretère ;
à gauche : uretère ectopique unilatéral, à droite, uretère ectopique bilatéral.

Cannizzo et al [11].

♦ Autres anomalies de la terminaison urétérale :

Il est également possible d'observer des gouttières urétérales, des tunnels sous-muqueux, ainsi que des fenestrations de l'uretère. En effet, alors que l'ouverture terminale de l'uretère a une

forme de fer à cheval, les autres ouvertures ne sont que des fenestrations de la paroi urétrale [11;77]

Si l'uretère est dilaté, sa partie distale peut être observée par l'introduction délicate de l'endoscope à travers l'orifice urétéral [77].

d-Informations complémentaires

L'endoscopie est un apport intéressant dans le diagnostic d'anomalies associées des orifices urétéraux, de la paroi et de la muqueuse vésicale, de l'urètre et du vagin [11; 98].

e- Limites

Cet examen nécessite une **anesthésie générale**. Il ne peut être réalisé que chez des animaux d'un **poids supérieur à 3 kg** [11; 77; 93; 98].

De plus, la mise en œuvre de cet examen requiert un matériel adapté et un opérateur expérimenté [93].

Son principal inconvénient est qu'elle ne permet pas l'évaluation de l'appareil urinaire supérieur, les reins et les uretères [11; 93].

Les **complications** de la procédure sont les traumatismes et les infections du tractus urinaire^[11].

f- Conclusion

L'utilisation de l'endoscopie pourrait améliorer sensiblement le diagnostic et la classification des uretères ectopiques ^[11; 77].

Néanmoins, la nécessité d'un matériel adapté et d'un utilisateur expérimenté fait qu'elle n'est pas encore utilisée couramment [11].

On pourrait la conseiller dans le cas d'animaux chez qui le diagnostic n'a pu être établi par les autres méthodes [93].

A l'heure actuelle, on ne sait pas si l'observation précise des lésions présentes permettrait de proposer un pronostic postopératoire plus fiable [11].

6- La tomodensitométrie

a- Intérêts

La tomodensitométrie avec produit de contraste pourrait être une technique d'imagerie supérieure pour identifier les uretères ectopiques chez le chien ^[98]. C'est la méthode de choix pour le diagnostic de l'ectopie urétérale en médecine humaine ^[93].

En effet, cette méthode n'est pas entravée par la superposition de structures osseuses et elle permet une meilleure visualisation de la jonction urétéro-vésicale par rapport aux méthodes classiques telles que l'UIV [93; 98].

La préparation du patient est également simplifiée $^{[93;\,98]}$. Au total, le temps de la procédure et l'exposition aux rayons X sont limités en comparasion aux méthodes radiographiques classiques $^{[98]}$.

La possibilité d'obtenir des images en deux dimensions et des images de synthèse en trois dimensions facilitent le diagnostic de l'ectopie urétérale et des lésions associées, en particulier rénales, ainsi que la planification chirurgicale [93; 98].

b- Technique [93]

L'animal anesthésié est placé en décubitus sternal pendant toute la durée de l'examen.

La vessie est cathétérisée, vidangée et remplie d'air.

Le produit de contraste est injecté par voie intraveineuse, en même quantité que pour l'urographie intraveineuse. Une seule injection est suffisante pour toute la durée de l'examen. Des images hélicoïdales sont prises du pôle crânial du rein droit à la fin du tractus urinaire

tandis que les images axiales sont réalisées depuis le milieu de la vessie jusqu'à la fin du tractus urinaire.

c- Critères diagnostiques

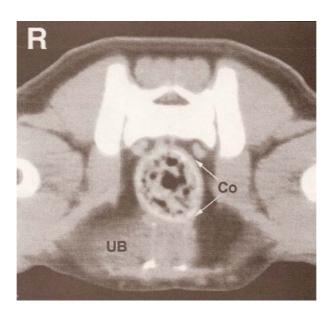
◆ Principe:

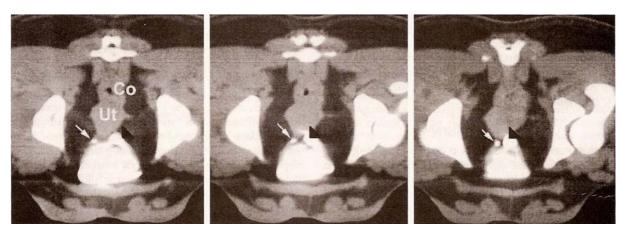
La tomodensitométrie permet l'obtention de différentes coupes de l'animal. On peut alors visualiser la totalité du tractus urinaire.

Les reins, les uretères et la vessie sont soulignés par le produit de contraste iodé.

♦ Scanner d'un animal normal :

Sur une coupe transversale d'un chien normal au niveau de la jonction sacro-iliaque, on observe le colon, rempli de matériel minéral opaque et de gaz, dorsalement à la vessie. Ventralement, les uretères s'abouchent dans la vessie au niveau du trigone vésical (cf. Figure 35) [93].




Figure 35 : Scanner : coupe transversale au niveau de la jonction sacro-iliaque montrant la terminaison normale des uretères dans la vessie.

UB : vessie, **R** : droite, **Co** : colon ; les deux uretères soulignés par le produit de contraste s'abouchent dans la vessie au niveau du trigone vésical.

Samii et al [93].

♦ Scanner d'un animal atteint d'ectopie urétérale :

Lors d'ectopie urétérale, on observe les uretères ectopiques dorsalement à la vessie, se continuant au delà du trigone vésical. Le diamètre de l'uretère est également mesurable (cf. Figure 36) [93].

Figure 36 : <u>Scanner : coupes transversales au niveau de la jonction coxo-fémorale montrant</u> une ectopie urétérale bilatérale.

Ut: utérus, **Co**: colon, **flèche blanche**: uretère droit, **flèche noire**: uretère gauche; l'uretère droit se tunnellise dans l'épaisseur de la paroi vésicale, l'uretère gauche est dilaté et tortueux et se poursuit distalement.

Samii et al [93].

d-Informations complémentaires

La possibilité d'identification d'anomalies du tractus uro-génital associées à l'ectopie urétérale est semblable à l'UIV [93].

e- Limites

Les images de la jonction urétéro-vésicale sont limitées par les **contractions péristaltiques de l'uretère**. Il est donc nécessaire de réaliser plusieurs prises de vue de cette jonction ^[98].

Cet examen nécessite des structures et un matériel adaptés, l'interprétation des images est difficile et demande une grande expérience [93].

Le **coût** est environ le double de l'ensemble des autres examens [93].

f- Conclusion

La tomodensitométrie est une méthode qui présente une très bonne sensibilité dans le diagnostic de l'ectopie urétérale et la localisation du site d'abouchement des uretères. Son utilisation pourrait améliorer le diagnostic de l'ectopie urétérale [93].

Elle est cependant encore très peu utilisée en médecine vétérinaire en raison de difficultés matérielles et techniques et de son coût ^[98].

7- L'exploration chirurgicale

L'exploration chirurgicale permet d'observer directement les lésions. C'est la méthode de référence, une inspection minutieuse permet de détecter la totalité des uretères ectopiques et des lésions associées ^[93].

8- Comparaison des différentes méthodes diagnostiques

Une étude de Samii et al sur 24 chiens, 20 femelles et 4 mâles dont 17 sont atteints d'ectopie urétérale a permis de comparer l'efficacité des différentes méthodes diagnostiques. La méthode de référence est l'exploration chirurgicale (cf. Tableau 2) [93].

	UIV	Endoscopie	Scanner
Diagnostic de l'ectopie urétérale	67 %	100 %	94 %
Localisation de la jonction urétéro-vésicale	53 %	94 %	88 %
Identification de tunnels sous-muqueux	36 %	55 %	73 %
Identification de méga-uretères	58 %	0	58 %

Tableau 2 : Comparaison des différentes méthodes diagnostiques de l'ectopie urétérale.

D'après Samii et al [93].

Conclusion [93]:

L'UIV est une bonne méthode diagnostique de l'ectopie urétérale, tout particulièrement lorsqu'elle est employée simultanément aux autres techniques radiographiques avec produit de contraste. Cependant, ces examens n'aboutissent pas toujours au diagnostic, et encore moins à la localisation précise de la jonction urétéro-vésicale.

La **tomodensitométrie** a une meilleure sensibilité que l'UIV, elle est non invasive et permet d'évaluer l'intégrité de l'appareil urinaire.

L'endoscopie présente de meilleurs résultats que les méthodes d'imagerie avec produit de contraste.

La tomodensitométrie et l'endoscopie paraissent donc être les meilleures techniques diagnostiques de l'ectopie urétérale. Cependant, leur utilisation courante est encore limitée par les moyens matériels et techniques qu'elles exigent.

C- Recherche de lésions associées

Certains examens complémentaires doivent être réalisés dans le but de mettre en évidence des complications ou des anomalies associées à l'ectopie urétérale.

1- L'analyse urinaire et la cytobactériologie

L'analyse urinaire par simple bandelette et l'analyse bactériologique urinaire sont des examens peu invasifs qui permettent d'explorer les complications infectieuses urinaires [20; 72]. La cystocentèse peut parfois être difficile en raison de la petite taille de la vessie et il est conseillé de s'aider de l'échographie, voire de réaliser le prélèvement pendant l'opération [72; 77; 98]

L'analyse des urines, complétée si nécessaire par un antibiogramme, est réalisée dans le but d'instaurer un traitement efficace et de supprimer l'infection avant de réaliser le traitement chirurgical ^[72].

2- Les analyses sanguines

a- Analyse biochimique

Un dosage de l'urée et de la créatinine sanguines est réalisé pour évaluer les complications métaboliques, essentiellement l'insuffisance rénale ^[20].

Celle-ci peut être due à une pyélonéphrite chronique, une affection obstructive ou des anomalies congénitales rénales associées ^[98].

b- Numération formule sanguine

Une leucocytose est parfois notée, consécutive aux lésions dermatologiques ou aux infections urinaires ou vaginales.

3- Epreuves urodynamiques

a- Intérêts

Des épreuves urodynamiques, et en particulier l'**urétroprofilométrie**, permettent d'évaluer les complications fonctionnelles, en particulier les anomalies de contraction du col vésical et du sphincter urétral.

Il existe trois indications majeures à cet examen [20; 74; 77]:

- Etablir un pronostic de continence postopératoire avant la correction chirurgicale des uretères ectopiques.
- Evaluer, en préopératoire, la réponse des animaux au traitement médical.
- Diagnostiquer une incompétence du sphincter urétral en cas de persistance de l'incontinence après le traitement chirurgical.

La **cystomanométrie** permet d'évaluer la capacité de remplissage de la vessie ^[66].

Il est également possible de mesurer la pression vésicale en même temps que la pression urétrale [43; 77].

Les techniques sont décrites dans l'annexe 4.

b- Résultats

Les chiens présentant une ectopie urétérale ont une pression urétrale significativement plus basse que les chiens normaux ^[58]. Des valeurs inférieures aux valeurs usuelles sont en faveur d'une incompétence du sphincter urétral.

Une étude réalisée par Lane et al sur 9 chiens atteints d'uretères ectopiques a permis d'évaluer la valeur pronostique de l'urétroprofilométrie [65; 66].

Les profils de pression urétrale ont été établis en préopératoire avec et sans traitement médical à base de phénylpropanolamine et comparés à l'acquisition de la continence postopératoire.

On compare les valeurs de pression urétrale maximale de fermeture.

Les résultats sont résumés dans le tableau suivant (cf. Tableau 3).

	Profil initial	Profil après	Continence	Corrélation
		traitement médical	postopératoire	
2 chiens	+	/	+	OUI
1 chien	+	/	_	NON
2 chiens	_	+	+ avec phénylprop.	OUI
4 chiens	_	_	_	OUI

Tableau 3 : Résultats d'une étude d'urétroprofilométrie sur 9 chiens avec ectopie urétérale. **Un profil de pression** + indique un profil dans les valeurs usuelles, **un profil de pression** – indique des valeurs inférieures aux valeurs usuelles, / : profil non réalisé. Le traitement médical n'a pas été administré aux animaux qui présentaient un profil initial normal.

D'après Lane et al [66].

Chez les 4 chiens incontinents avec des profils anormaux, une amélioration de la continence a tout de même été observée suite à l'augmentation de la posologie de la phénylpropanolamine.

Un chien présentant un profil de pression urétrale normal avant l'opération est resté incontinent, probablement en raison d'une hypoplasie vésicale ou de la persistance d'une autre anomalie anatomique.

En conclusion, le pronostic apporté par les épreuves urodynamiques préopératoires était correct pour 8 des 9 chiens étudiés ^[66].

c- Limites

La mesure de profils de pression urétrale nécessite un **équipement particulier** qui doit être **standardisé** par chaque utilisateur. Ainsi, cette méthode n'est pas utilisée en diagnostic de routine [98].

Le profil de pression est également **très difficile à interpréter** à cause de l'interférence mécanique de l'uretère qui passe à travers la partie proximale de l'urètre [98].

De plus, **l'utilisation d'un seul paramètre**, tel que la pression urétrale maximale de fermeture, n'est pas totalement valide. L'interprétation d'un paramètre qui tient compte de la longueur et de la pression efficace, telle que l'aire du profil fonctionnelle, serait plus représentatif de la fonction urétrale ^[66].

Les différentes valeurs du profil de pression urétrale seraient plus justes sur un animal vigile. Cependant, les manipulations nécessitent un animal calme et une anesthésie est souvent nécessaire. Les valeurs de référence sont donc données chez des **animaux anesthésiés** [66].

De plus, lors de la cathétérisation de l'urètre, un **uretère ectopique peut être sondé** accidentellement et interférer avec les résultats ^[98].

Même si l'utilisation des profils de pression pour le pronostic postopératoire à court terme semble intéressant, le **pronostic à long terme est évalué avec beaucoup moins de précision**^[66].

Les **complications** sont rares. Le développement d'une infection du tractus urinaire est possible ^[66].

d- Conclusion

Cette méthode semble donner de bons résultats et pourrait être utile pour détecter les anomalies associées de la vessie et de l'urètre et affiner le pronostic de continence postopératoire [58; 66; 98]. Son utilisation courante reste néanmoins limitée par le matériel et la technicité qu'elle demande.

VII- TRAITEMENT

Le traitement de l'ectopie urétérale est **chirurgical**. Le choix d'un protocole chirurgical est fonction du caractère unilatéral ou bilatéral de l'affection, du type de l'ectopie urétérale, du statut fonctionnel des reins et des malformations associées à l'ectopie [3; 20; 72; 77; 99].

Aucun cas d'ectopie urétérale n'a pu être contrôlé avec un traitement médical seul. Chez les jeunes animaux présentant un infection du tractus urinaire secondaire à l'ectopie, une antibiothérapie peut améliorer transitoirement l'incontinence [99].

Chez le chat, la petite taille des structures rend les techniques chirurgicales difficiles. L'utilisation d'un microscope opératoire et d'un matériel adapté est conseillée ^[41].

A- Choix du traitement chirurgical

1- En cas de lésions rénales

Si l'animal présente des anomalies anatomiques graves du rein ipsilatéral, telles qu'une hydronéphrose, ou de l'uretère, telles qu'un méga-uretère, il est conseillé de pratiquer d'emblée une néphrectomie avec urétérectomie, sous réserve que le rein restant soit complètement fonctionnel [20].

Dans le cas où l'animal n'a qu'un seul rein, tout traitement chirurgical ou médical qui pourrait compromettre son fonctionnement est déconseillé [3].

2- En l'absence de lésion rénale

En l'absence d'anomalie grave, différentes techniques chirurgicales sont proposées, et le choix de la technique la plus adaptée dépend du trajet distal de l'uretère ectopique [20]:

Si l'uretère ectopique a un trajet intra-mural, on pratique une néo-urétérostomie.

En cas de *position extra-murale*, on réalise une urétéronéocystostomie.

B- Traitement de soutien

En attendant l'opération, un traitement de soutien visant à améliorer le confort de l'animal et les conditions de l'intervention est mis en place.

Les cystites secondaires sont éliminées grâce à une antibiothérapie [84; 104].

Une crème émolliente est appliquée en abondance sur la peau pour prévenir les dermatites provoquées par le contact de l'urine [84]. Dans le cas où une dermatite est déjà présente, elle est contrôlée avec un traitement adapté.

C- Exploration du tractus urinaire dans sa totalité

Chaque intervention débute par une exploration complète et minutieuse de l'ensemble du tractus urinaire.

L'animal est placé en décubitus dorsal. Le champ opératoire s'étend de l'appendice xiphoïde jusqu'au pubis [77].

L'appareil urinaire est abordé par une laparotomie ventrale médiale s'étendant jusqu'au pubis^[77; 104].

Le premier temps chirurgical comprend toujours l'inspection de tout l'appareil urinaire, en partant des reins et en suivant les uretères jusqu'à la vessie [85; 99].

La mise en place de fils de traction à l'apex de la vessie et de part et d'autre de l'incision dans l'épaisseur de la paroi vésicale facilite la manipulation de la vessie [77; 99; 104].

La vessie est alors complètement vidée puis largement ouverte par une cystotomie ventrale jusqu'au niveau du trigone vésical voire jusque dans l'urètre [77; 85; 99; 104].

Une inspection minutieuse de la surface luminale de la vessie et de l'urètre permet de rechercher les orifices urétéraux, les tunnels sous-muqueux et les gouttières urétérales. Les ouvertures visibles des uretères sont cathétérisées pour rechercher d'éventuelles autres branches. En revanche, les uretères ectopiques se terminant dans la partie distale de l'urètre ou dans le vagin ne peuvent pas être détectés [77; 85; 99; 104].

D- <u>Urétéro-néphrectomie</u>

1- Indications

Si l'animal présente des anomalies anatomiques graves du rein ipsilatéral, telles qu'une hydronéphrose ou une pyélonéphrite importante, ou de l'uretère, telles qu'un méga-uretère, il est conseillé de pratiquer d'emblée une néphrectomie avec urétérectomie [20; 46; 50; 85; 97]. En effet, ces lésions ne rétrocèdent que rarement lors du traitement de l'ectopie urétérale [72]. Cependant, il est essentiel, avant un tel acte, de s'assurer que le rein controlatéral ne présente

2- Technique chirurgicale [77]

aucune anomalie anatomique ou fonctionnelle [77; 97; 99].

L'incision de laparotomie s'étend de l'appendice xiphoïde au pubis.

Le rein est sorti de l'espace rétro-péritonéal et libéré de ses fascias et de ses attaches de façon à exposer le pédicule vasculaire et le hile. Il est ensuite récliné médialement. La graisse périrénale, présente sur la partie dorsale du hile, est disséquée pour exposer le pédicule vasculaire.

La veine et l'artère rénales sont ligaturées séparément. Une suture transfixante supplémentaire est placée sur l'artère rénale. Les vaisseaux sont alors sectionnés.

L'uretère est ensuite disséqué depuis l'espace rétropéritonéal jusqu'à sa terminaison vésicale, ligaturé le plus distalement possible avec un fil résorbable 3-0 et sectionné.

L'exérèse d'un rein non-fonctionnel sans l'exérèse de son uretère ectopique intra-mural associé pourrait amener à la persistance de l'incontinence postopératoire, en raison de l'interruption du sphincter par le tunnel urétéral sous-muqueux. Il serait donc nécessaire d'exciser ou de ligaturer la partie intra-murale de l'uretère par la technique décrite dans le paragraphe E (néo-urétérostomie) [77; 97; 99].

La paroi abdominale est refermée classiquement.

E- <u>Urétéronéocystostomie</u>

1- Définition

Elle est également appelée anastomose urétéro-vésicale extra-vésicale, ou réimplantation urétérale [77; 104].

Elle consiste en une réimplantation de l'uretère sur la face dorsale de la vessie après tunnellisation de son trajet afin de réaliser un système anti-reflux [20; 91]

2- Indications

L'urétéronéocystotomie n'est généralement indiquée que pour la **correction d'uretères ectopiques extra-muraux** car cette technique peut léser la vascularisation et l'innervation urétérales et stopper l'activité péristaltique de l'uretère. Les complications de méga-uretère et d'hydronéphrose sont alors plus fréquentes [97; 99; 100; 104].

Cependant, elle peut être préconisée lors d'uretères ectopiques intra-muraux dont l'abouchement est très distal sur la vessie et dont la correction par néo-urétérostomie pourrait amener à une jonction urétéro-vésicale située caudalement au trigone vésical, entraînant une incontinence [100].

3- Technique chirurgicale

◆ Isolement de la partie distale de l'uretère [30; 77; 80; 85; 99] :

Après laparotomie et cystotomie ventrales, l'uretère ectopique est ligaturé et sectionné aussi distalement que possible avec du fil résorbable 3-0 pour éviter la formation d'un pyo-uretère et pour garder la plus grande longueur possible (cf. Figure 37–A).

La partie distale de l'uretère est isolée précautionneusement du fascia urétéral de manière à ne pas léser la vascularisation [9; 77; 99].

ullet Réalisation du tunnel intra-pariétal $^{[9;\,30;\,77;\,85;\,91;\,99]}$:

Une ellipse de muqueuse vésicale est excisée dans région du trigone ou à un quelconque endroit entre l'apex et le trigone vésical. Un court tunnel en trajet sous-muqueux est réalisé de l'intérieur vers l'extérieur, en direction caudo-crâniale, soit par dissection, soit par injection de sérum physiologique pour amorcer le décollement. Puis la musculeuse et la séreuse sont ponctionnées avec une pince hémostatique.

Le tunnel ne doit pas être trop long pour limiter la formation d'urétérocèle ou de mégauretère. On conseille une longueur de six fois le diamètre de l'uretère.

♦ <u>Anastomose urétéro-vésicale</u> [9; 30; 77; 80; 85; 99] :

La partie libre de l'uretère est alors pourvue d'un fil de traction et passée dans le tunnel (cf. Figure 37–B).

Une fois à l'intérieur de la vessie, l'extrémité distale de l'uretère est sectionnée et spatulée par une incision longitudinale sur environ 2 mm (cf. Figure 37–C).

L'anastomose est achevée par la mise en place d'une suture entre l'uretère et la muqueuse vésicale par des points simples avec du fil résorbable 5-0 (cf. Figure 37–D). L'uretère ne doit pas être vrillé, de manière à préserver la vascularisation et ne pas l'obstruer.

La vessie et la cavité abdominale sont rincées et refermées classiquement (cf. annexe 5) [77; 85].

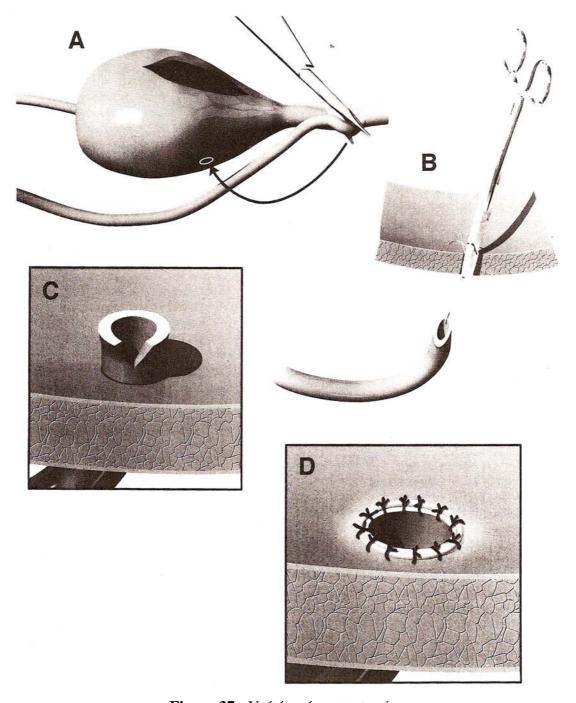


Figure 37: <u>Urétéronéocystostomie.</u>

A : section distale de l'uretère, B : passage de l'uretère à travers la paroi vésicale, C : spatulisation de l'uretère, D : suture des muqueuses urétérale et vésicale.

McLoughlin et Chew [77].

F- Néo-urétérostomie

1- Définition

Elle est aussi appelée anastomose urétéro-vésicale intra-vésicale [104].

L'intervention consiste, pour les uretères ectopiques intra-muraux, à créer un nouvel orifice au niveau du trigone vésical et à sectionner et ligaturer leur portion distale ectopique [20; 99; 100].

2- Indications

La néo-urétérostomie est indiquée pour la correction des uretères ectopiques intra-muraux.

Cette technique nécessite moins de manipulations et présente moins de risques traumatiques pour l'uretère que l'urétéronéocystostomie. Elle peut être réalisée sur des vessies de petite taille. C'est donc la méthode de choix pour les uretères ectopiques intra-muraux [97].

La technique est modifiée pour la correction des uretères ectopiques avec ouverture urétérale double et gouttière urétérale.

3- Technique chirurgicale

Une laparotomie suivie d'une cystotomie ventrale permettent la visualisation de la région du trigone vésical [80].

a- Uretère ectopique intra-mural simple

◆ Création d'un nouvel orifice urétéral [30; 77; 80; 85; 97] :

Une pression manuelle exercée sur le col vésical produit une dilatation de l'uretère ectopique intra-mural qui est alors facilement visualisable à travers la muqueuse vésicale. Une injection intraveineuse préalable de diurétique (furosémide 2mg/kg) augmente la dilatation urétérale^[85]. Une incision de 5 à 10 mm est alors effectuée en regard de l'uretère dans la zone du trigone vésical, atteignant la lumière urétérale (cf. Figure 38–A).

La muqueuse urétérale est suturée à la muqueuse vésicale par des points simples avec un fil résorbable 4-0 à 7-0 autour de cette incision, afin de former un nouvel orifice urétéral (cf. Figure 38–B).

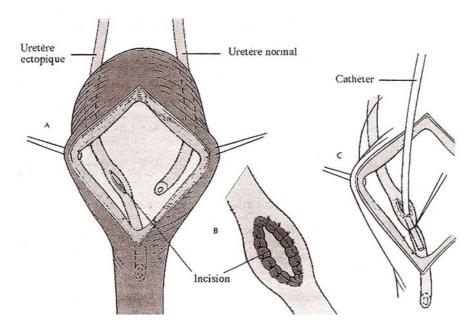
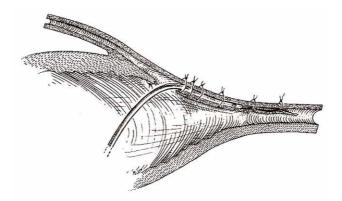


Figure 38 : Néo-urétérostomie.

 $\bf A$: incision sur le trajet sous-muqueux de l'uretère, $\bf B$: suture entre la muqueuse urétérale et la muqueuse vésicale, $\bf C$: cathétérisation et ligature de la partie distale de l'uretère ectopique. Pelerin et Witz [85].


♦ Fermeture de la partie distale de l'uretère :

Deux techniques sont décrites : la ligature simple ou la résection de la partie distale de l'uretère ectopique.

Il semble que l'incontinence postopératoire soit fréquente chez les animaux ayant eu une simple ligature de la partie distale de l'uretère. La résection de la portion distale de l'uretère parait préférable. Elle pourrait aider à restaurer le fonctionnement du sphincter urétral interne et augmenter les chances de continence postopératoire [77; 80; 99].

Ligature:

La portion terminale de l'uretère est cathétérisée (cf. Figure 38–C). Plusieurs ligatures sont placées autour du cathéter, à travers la séreuse et la musculeuse, sans pénétrer dans la lumière vésicale, avec un fil irrésorbable (Prolène® déc.2) et sont ensuite serrées après le retrait du cathéter (cf. Figure 39) [30; 85; 97; 104].

Figure 39 : Correction chirurgicale de l'uretère ectopique intra-mural.

La portion ectopique de l'uretère est occluse au moyen de sutures traversant la séreuse et la musculeuse et entourant l'uretère. Lorsque le cathéter est retiré, les sutures sont serrées.

Guillemot et al [38].

Résection et reconstruction de l'urètre et du trigone vésical :

Lorsqu'on choisit cette technique, on commence par réséquer la partie distale de l'uretère puis on crée le nouvel orifice urétéral [77].

L'uretère est cathétérisé à partir de son orifice ectopique. Si celui-ci est trop loin sur l'urètre pour être atteint, une incision la plus caudale possible de la paroi urétrale permet d'atteindre la lumière et d'y placer un cathéter (cf. Figure 40–A) [77; 99].

L'uretère est ensuite disséqué et séparé des tissus environnants grâce à des petits ciseaux. Les tissus environnants sont la muqueuse, la sous-muqueuse et la musculeuse urétrales. Il faut cependant éviter de léser la couche séromusculaire de la paroi dorsale de l'urètre. L'uretère est ainsi disséqué jusqu'à l'endroit où il traverse la paroi vésicale (cf. Figure 40–B) [77; 99].

Une suture par surjet ou par points simples avec du fil résorbable monofilament 4-0 ou 5-0 referme la gouttière laissée par la dissection. La suture doit prendre une partie importante du muscle lisse en même temps que la muqueuse urétrale et vésicale (cf. Figure 40–C).

La riche vascularisation de la muqueuse urétrale provoque une hémorragie importante lors de la dissection. Il est donc conseillé d'alterner dissection et suture pour accélérer l'hémostase [77; 80; 99].

L'uretère est ensuite sectionné à proximité de son entrée dans la vessie et suturé à la muqueuse vésicale afin de créer un nouvel orifice urétéral [77].

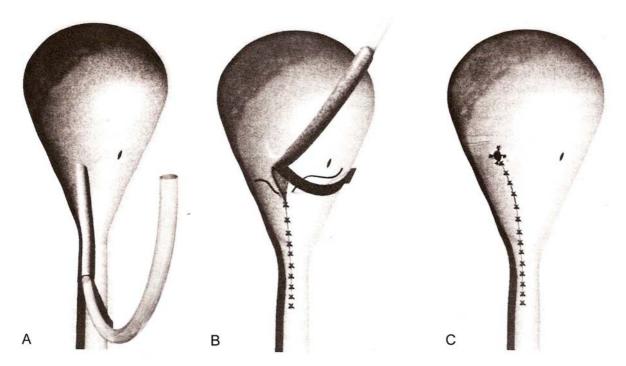


Figure 40 : Correction des uretères ectopiques intra-muraux par reconstruction de l'urètre et du trigone vésical.

 ${f A}$: cathétérisation de l'uretère par son orifice distal, ${f B}$: dissection, résection de l'uretère et suture urétrale, ${f C}$: exérèse de l'uretère et poursuite de la suture urétrale et vésicale.

McLoughlin et Chew [77].

b- Uretère ectopique intra-mural avec ouverture double

En présence d'un uretère ectopique avec ouverture urétérale double, le traitement consiste seulement à ligaturer ou à réséquer la branche distale (cf. Figure 39 et Figure 40) [38; 72; 97].

c- Uretère ectopique intra-mural avec gouttière urétérale

Une bande de muqueuse est retirée de chaque coté de la gouttière, qui est ensuite fermée par un surjet ou des points simples avec du fil résorbable déc. 1,5 [55]. Une autre technique consiste à ligaturer directement la gouttière par un surjet simple [72; 97].

Dans tous les cas, la vessie est ensuite rincée et fermée (cf. annexe 5) puis un lavage péritonéal est suivi de la suture de la plaie de laparotomie [38; 77].

G- <u>Association de la correction de l'ectopie urétérale avec</u> <u>une colposuspension</u>

1- Intérêt

La colposuspension est le traitement chirurgical de l'incompétence du sphincter urétral.

Cette anomalie sphinctérienne est fréquemment associée à l'ectopie urétérale.

La réalisation d'une colposuspension en même temps que la correction de l'ectopie urétérale éviterait ainsi deux interventions séparées aux animaux présentant ces deux affections associées [80].

2- Etude de Mouatt et Watt

Une étude a donc été réalisée par Mouatt et Watt chez 7 chiens atteints d'ectopie urétérale, ayant subi une colposuspension pendant la correction des uretères ectopiques [80].

a- Technique chirurgicale

La technique chirurgicale de la colposuspension a été décrite dans le chapitre 2, p 79.

Cette intervention ne paraît pas interférer avec le site chirurgical de la chirurgie urétérale et la mise en place des sutures de colposuspension n'est pas altérée par la correction de l'ectopie urétérale.

Cependant, en raison de l'œdème urétéral et vésical provoqué par la correction des uretères ectopiques, il est difficile de savoir quelle force exercer pour serrer les sutures de colposuspension [80].

b- Résultats

Le suivi postopératoire a montré **71% d'excellents résultats**, c'est-à-dire une continence complète chez 5 des 7 chiennes traitées.

Les deux autres ont présenté une continence postopératoire transitoire suivie d'une réapparition de l'incontinence, probablement en rapport avec la rupture des sutures de colposuspension. Cette rupture pourrait être due à la croissance rapide de ces deux chiennes en raison de leur âge (moins de trois mois) [80].

Ces résultats sont donc supérieurs à ceux observés dans les autres études. Dans les cas où la colposuspension n'est pas nécessaire, elle augmente le temps anesthésique et les complications postopératoires de manière modérée [80].

c- Limites

Cependant, le **faible nombre de cas** ne permet pas d'affirmer la légitimité de cette technique. Il serait intéressant de réaliser une étude identique à plus grande échelle ^[80].

VIII- SOINS POSTOPERATOIRES:

A- Antibiothérapie

Une antibiothérapie est poursuivie pendant 3 à 4 semaines. On prescrit de la céfalexine (Rilexine®, Thérios®) à la posologie de 30 mg/kg/j en deux prises ou de la marbofloxacine (Marbocyl®) à 2mg/kg/j [38; 85; 91; 99].

B- Contrôle de la douleur

La douleur est contrôlée par l'administration d'opioïdes par voie parentérale puis d'AINS par voie orale [99].

C- Contrôle de la diurèse

La capacité à uriner, la fréquence des mictions et la persistance de l'incontinence sont observées pendant les jours qui suivent l'opération, particulièrement en cas de correction bilatérale des uretères ectopiques [80; 99].

En cas de dysurie ou de strangurie importante, un sondage vésical peut être nécessaire ^[80]. Lors de néo-urétérostomie avec résection de la partie distale de l'uretère, il est conseillé de laisser un cathéter urinaire en place pendant 24 à 48 heures. Une strangurie peut persister

pendant plusieurs semaines même si le plus souvent, les animaux urinent aisément 2 à 3 jours après l'opération [77; 99].

IX-Suivi

A-Résolution de l'incontinence

Sur un plan fonctionnel, l'incontinence urinaire disparaît généralement le lendemain de l'intervention [20].

Parfois, une incontinence persiste après l'intervention mais peut s'améliorer au fil des semaines avec le développement de la capacité vésicale. Au contraire, un chien continent juste après l'intervention peut redevenir incontinent après plusieurs semaines voire plusieurs mois. Un contact téléphonique avec le propriétaire permet de suivre ces informations.

B- Suivi par urographie intraveineuse

La réalisation d'une UIV en **postopératoire immédiat ou quelques jours après l'intervention** permet de vérifier la localisation de la jonction urétéro-vésicale et d'avoir des clichés qui pourront être comparés à ceux réalisés ultérieurement pour évaluer la dilatation urétérale et l'hydronéphrose éventuellement présentes [20; 100].

Une nouvelle UIV est réalisée **6 à 8 semaines après l'intervention et éventuellement après plusieurs mois** pour contrôler l'apparition ou l'évolution d'un méga-uretère et d'une hydronéphrose ^[9; 91; 100].

C- Suivi des paramètres sanguins

Il convient également de contrôler régulièrement le fonctionnement rénal par mesure de l'urée et de la créatinine sanguines [72; 85].

X- COMPLICATIONS POSTOPERATOIRES

A- Dysurie

L'inflammation associée à l'hypoplasie vésicale peut provoquer une dysurie, une strangurie ou une pollakiurie pendant 2 ou 3 jours après l'opération [99; 104].

B- Dilatation urétérale et hydronéphrose

Après réimplantation urétérale, il est normal de constater une dilatation modérée de l'uretère ainsi qu'une légère hydronéphrose, qui ne sont généralement pas accompagnées de signes cliniques et qui doivent régresser dans les deux à six semaines [20; 77; 85; 99; 100]. Ces complications seraient provoquées par le traumatisme, l'œdème, l'inflammation, un caillot sanguin ou une sténose induits par l'opération, occluant partiellement le nouvel orifice urétéral [50; 77; 99; 100].

Après plusieurs semaines, la persistance d'une dilatation urétérale et d'une hydronéphrose signent des complications sténotiques de l'orifice d'abouchement de l'uretère. Une réintervention peut alors être nécessaire ^[20; 91]. Ces complications sont rares et peuvent passer inaperçues si le rein controlatéral est fonctionnel. Pour cette raison, il est important de réaliser une UIV 6 à 8 semaines après l'opération ^[100].

Lorsqu'un méga-uretère était déjà présent avant l'opération, son diamètre peut diminuer mais ne reviendra jamais à une taille normale [77].

C- Fuite ou rupture de l'anastomose

Une rupture ou une fuite de l'anastomose urétéro-vésicale est possible mais rare [9; 50; 91].

D- Infections du tractus urinaire

Les infections, telles qu'une pyélonéphrite, sont des complications rares mais graves. Il est donc essentiel de détecter et de traiter les infections préexistantes avec toute intervention chirurgicale ^[52].

E- Autres complications

Une striction iléale due à des adhésions de l'omentum a été décrite par Holt et al [50].

F- <u>Comparaison des complications en fonction de la</u> nature de l'intervention

Des complications surviennent dans 14% des cas traités [52].

L'urétéro-néphrectomie entraîne moins de complications (6%) que l'urétéronéocystostomie (14%) et la néo-urétérostomie (19%) [52].

Le taux de complications n'est pas significativement différent entre les deux dernières méthodes, cependant, le type de complication varie : lors de néo-urétérostomie, on rencontre surtout une dysurie alors que l'urétéronéocystostomie provoque surtout une hydronéphrose, plus grave que la dysurie [52].

XI-PRONOSTIC

Le pronostic vital est bon dans la plupart des cas, en absence d'altération de la fonction rénale^[72].

Le pronostic concernant les chances de continence urinaire est quant à lui plus réservé.

Chez le chat, le pronostic est bon, 89% des animaux traités sont continents après l'intervention [48].

Chez le chien, en revanche, le pronostic de continence est plus réservé. En effet, selon les études, 42 à 67% des animaux peuvent conserver un certain degré d'incontinence après l'opération [33; 50; 52; 65; 72; 76; 77; 80; 98-100; 104].

Dans les cas où une incontinence persiste, elle est, chez 55% à 60% des animaux, diminuée en fréquence ou en quantité ^[52; 80; 99]. Parfois elle n'est plus observée que pendant l'œstrus ^[97].

Il arrive que la correction chirurgicale d'un seul uretère ectopique chez un animal présentant une ectopie bilatérale suffise à rétablir la continence urinaire. La raison de cette guérison est inconnue [52].

A- Facteurs influençant le pronostic

L'âge de l'animal au moment de l'opération, le caractère unilatéral ou bilatéral de l'ectopie, la présence d'une infection du tractus urinaire et le choix de la technique chirurgicale ne paraissent pas avoir d'incidence sur les chances de continence postopératoire [52; 76].

La position de la vessie et la longueur de l'urètre, visibles sur les radiographies préopératoires, n'ont aucune valeur prédictive de continence postopératoire. Seule la réalisation de profils de pression urétrale peuvent aider à établir un pronostic ^[52].

Les chiens atteints d'ectopie urétérale intra-murale simple, avec gouttière urétérale ou ouverture urétérale double ont une plus haute incidence d'incontinence postopératoire en raison de l'interruption mécanique du sphincter urétral [33; 50; 65; 66; 76; 80; 97].

B- Causes d'incontinence postopératoire

Lorsque l'incontinence urinaire persiste, il convient de se rappeler que l'ectopie urétérale peut être associée à d'autres anomalies anatomiques ou fonctionnelles [20].

Ainsi, les différentes causes de persistance de l'incontinence urinaire après correction chirurgicale sont les infections urinaires, les anomalies neurologiques urétrales, l'ectopie urétérale bilatérale, les autres anomalies congénitales urinaires, l'incapacité de la vessie à répondre à une augmentation de volume, les malformations vestibulo-vaginales ou un échec chirurgical [20; 33; 46; 50; 66; 76; 97; 99].

1- Echec chirurgical

Les causes possibles d'échec chirurgical sont la **non-identification d'une branche urétérale ectopique**, en cas d'uretère ectopique avec ouverture double ou **l'occlusion incomplète de la partie distale de l'uretère** lors de néo-urétérostomie ^[76].

La **recanalisation** de la partie distale de l'uretère lors d'uretère intra-mural peut expliquer la réapparition de l'incontinence quelques temps après l'intervention ^[65; 76; 80]. La ligature de la partie distale de l'uretère avec du fil irrésorbable, la mise en place de multiples ligatures ou la résection de la partie distale de l'uretère permettrait de diminuer les risques de persistance de l'incontinence postopératoire ^[76].

2- Hypoplasie vésicale

L'hypoplasie vésicale est due à un défaut de remplissage vésical, elle est souvent plus marquée en cas d'ectopie urétérale bilatérale ^[76].

Cependant, après la correction d'uretères ectopiques, la vessie peut, chez certains animaux, augmenter progressivement de volume jusqu'à atteindre une taille suffisante à des mictions espacées ^[50; 65; 66]. L'administration d'anticholinergiques contribue à améliorer le remplissage vésical ^[65; 66].

3- Incompétence du sphincter urétral

La cause la plus fréquente de persistance de l'incontinence est la présence, simultanément à l'ectopie urétérale, d'une incompétence sphinctérienne urétrale [33; 50; 66; 80; 100].

Cette incompétence peut être une anomalie associée à l'ectopie ou être due à l'interruption mécanique du sphincter urétral par la partie distale de l'uretère qui forme un tunnel sous-muqueux dans la partie proximale de l'urètre dans les cas d'ectopie urétérale intra-murale simple, avec gouttière urétérale ou ouverture urétérale double. [33; 50; 65; 66; 76; 80; 97].

La réalisation de profils de pression urétrale avant la correction chirurgicale de l'ectopie urétérale pourrait permettre de diagnostiquer l'incompétence sphinctérienne et de donner un pronostic de continence post-chirurgicale ^[76].

C- Conduite à tenir

1- Diagnostic de la cause de l'incontinence

Si l'incontinence persiste plus de 2 à 3 mois après la correction de l'ectopie urétérale, on effectue un examen complet de l'animal afin d'en découvrir la cause [77; 97; 99].

Les examens complémentaires mis en oeuvre sont alors les radiographies de contraste (UIV, vagino-urétrographie, cystographie), l'ECBU et les épreuves urodynamiques pour évaluer la fonction du sphincter urétral [33; 97; 99; 100].

2- Traitement

Une fois la cause de l'incontinence établie, on met en place un traitement adapté.

- ♦ En cas <u>d'échec chirurgical</u>, il est parfois nécessaire de pratiquer une nouvelle intervention.
- ◆ En cas <u>d'hypoplasie vésicale</u>, des anticholinergiques peuvent aider au remplissage vésical^[65; 66].

♦ En cas <u>d'incompétence du sphincter urétral</u>, un traitement médical ou chirurgical est possible.

- Traitement médical :

Le traitement médical a pour but de renforcer la continence sphinctérienne. Sa durée est de 2 mois minimum [20; 38; 77; 85; 100; 104].

Deux molécules sont utilisables, ce sont des α -mimétiques :

- La **pseudoéphédrine** (l'éphédrine n'est plus commercialisée) (Sudafed®) : 1 mg/kg, trois fois par jour, PO $^{[38;\ 104]}$.
- La **phénylpropanolamine** (Rinutan®, Dénoral®) : 1,5 à 2 mg/kg, deux à trois fois par jour, PO $^{[85]}$.

- Traitement chirurgical:

Différentes techniques sont possibles. Elles ont été décrites dans le chapitre 2. La colposuspension est la technique la plus utilisée et donne de bons résultats [80; 99; 104].

CONCLUSION

L'incontinence urinaire est une affection peu fréquente chez le jeune carnivore domestique, et résulte de malformations congénitales très variées. Le plus souvent, aucun signe clinique ne lui est associé, rendant le diagnostic différentiel peu évident. Dans un premier temps, le recueil des commémoratifs précis, en particulier l'âge de l'animal et le moment d'apparition des signes, la présence ou non de mictions volontaires, l'intensité et la permanence de l'incontinence orientent le diagnostic. La radiographie avec produit de contraste est actuellement l'examen complémentaire de choix face à une incontinence urinaire mais elle présente des limites certaines. Bien qu'encore peu utilisées en médecine vétérinaire car elles demandent un matériel adapté et un utilisateur expérimenté, des techniques récentes telles que la tomodensitométrie, l'endoscopie ou l'urétroprofilométrie, amènent des perspectives intéressantes, tout particulièrement dans le diagnostic de l'ectopie urétérale. Elles permettent d'améliorer la sensibilité diagnostique et de préciser la nature des anomalies afin de prévoir le traitement le plus adapté.

Dans la majorité des cas, la thérapeutique repose sur une intervention chirurgicale délicate. Il est néanmoins essentiel de la proposer car même si le pronostic vital de l'animal est rarement menacé, les propriétaires sont souvent découragés par les contraintes liées à la possession d'un animal de compagnie incontinent.

Le Professeur responsable de l'Ecole Nationale Vétérinaire de Lyon Vu : Le Directeur

de l'Ecole Nationale Vétérinaire de Lyon

Le Président de la thèse

Vu et permis d'imprimer

Pour le Président de l'Université AUDE Le Président du Comité de Coordination des Etudes Médicales,

LYON

ProfesseuPD. VITAL-DURAND

BIBLIOGRAPHIE

- 1. AARON A., EGGLETON K., POWER C. and HOLT P. E., (1996)
- Urethral sphincter mechanism incompetence in male dogs: a retrospective analysis of 54 cases, *Vet. Rec.*, 139, pp. 542-546.
- **2.** ADAMS W. M. and DIBARTOLA S. P., (1983)

Radiographic and clinical features of pelvic bladder in the dog, *J. Am. Vet. Med. Assoc.*, **182**; (11), pp. 1212-1217.

3. AGUT A., FERNANDEZ DEL PALACIO M. J., LAREDO F. G., MURCIANO J., BAYON A. and SOLER M., (2002)

Unilateral renal agenesis associated with additional congenital abnormalities of the urinary tract in a Pekingese bitch, J. Small Anim. Pract., 43, pp. 32-35.

- **4.** ALLEN W. E., DAKER M. G. and HANCOCK J. L., (1981) **Three intersexual dogs**, *Vet. Rec.*, **109**, pp. 468-471.
- **5.** ARNOLD S. and WEBER U., (2000)

Urethral sphincter mechanism incompetence in male dogs, In: J.D. B. (ed). *Current Vet Therapy XIII Small Animal Practice*, W.B. Saunders company Philadelphia, pp. 896-899.

6. BAILEY C. S. and MORGAN J. P., (1992)

Congenital spinal malformations, Vet. Clin. North Am. Small Anim. Pract., **22**; (4), pp. 985-1015.

7. BARONE R. (2001)

Anatomie comparée des mammifères domestiques. Tome 4: Splanchnologie II, 3ème édition ed. Vigot, Paris, 896 p.

8. BARTGES J. W., (2000)

Diseases of the urinary bladder, In: BIRCHARD S. J. and SHERDING R. G. (eds). *Saunders Manual of Small Animal Practice*, 2nd ed., W. B. Saunders Company Philadelphia, pp. 943-957.

9. BJORLING D. E., (2000)

Surgery of the kidney and ureter, In: BIRCHARD S. J. and SHERDING R. G. (eds). *Saunders Manual of Small Animal Practice*, 2nd ed., W.B. Saunders Company Philadelphia, pp. 964-968.

- **10.** BREDAL W. P., THORESEN S. I., KVELLESTAD A. and LINDBLAD K., (1997) **Male pseudohermaphroditism in a cat**, *J. Small Anim. Pract.*, **38**, pp. 21-24.
- **11.** CANNIZZO K. L., McLOUGHLIN M. A., MATTOON J. S., SAMII V. F., CHEW D. J. and DIBARTOLA S. P., (2003)

Evaluation of transurethral cystoscopy and excretory urography for diagnosis of ectopic ureters in female dogs: 25 cases (1992-2000), *J. Am. Vet. Med. Assoc.*, 223; (4), pp. 475-481.

12. CAUCHARD D. M., (2004)

Ectopie urétérale chez le chien: valeur pronostique des paramètres urodynamiques, étude rétrospective sur dix cas, *Thèse de doctorat vétérinaire*, Faculté de médecine, Créteil, 82p p.

13. CHAFFAUX S., (1992)

Intersexualité du chien. *Encyclopédie vétérinaire*, Elsevier Paris, pp. 1-4.

14. CHAFFAUX S. and CRIBIU E. P., (1990)

Pseudohermaphrodisme femelle d'origine iatrogène chez trois chienne d'une même portée, Rec. Med. Vet., **166**, pp. 407-411.

15. CHAFFAUX S., CRIBIU E. P. and CRESPEAU F., (1986)

Un cas d'hermaphrodisme vrai latéral chez une chienne 78 XY, Rec. Med. Vet., 162, pp. 463-470.

16. CHAFFAUX S., MAILHAC J. M., CRIBIU E. P., POPOESCU C. P. and COTARD J. P., (1990)

L'intersexualité chez le chien (Canis familiaris). A propos de quatre cas., Rec. Med. Vet., **166**, pp. 125-132.

17. CHESNEY C. J., (1973)

A case of spina bifida in a chihuahua, Vet. Rec., 93, pp. 120-121.

18. COTARD J. P., (1993)

Anomalies congénitales et héréditaires de l'appareil urinaire. *Congrès C.N.V.S.P.A.* Paris, Novembre 1993, pp. 219-220.

19. COTARD J. P., (1999)

Cours de néphrologie-urologie, Document pédagogique interne à l'ENVL, 154 p.

20. COTARD J. P., (1996)

L'ectopie urétérale, *Point Vét.*, **28**, Numéro spécial: Affections héréditaires et congénitales des carnivores domestiques., pp. 588-591.

21. DEMONGEOT A., (1985)

Les anomalies congénitales et héréditaires de l'appareil urinaire du chien., *Thèse de doctorat vétérinaire*, Faculté de médecine de Créteil, 80 p.

22. DENEUCHE A. and VIGUIER E., (2002)

Sutures du bas appareil urinaire canin et félin, Point Vét., 222, pp. 44-48.

23. DESCHAMPS J. Y., (1994)

Incontinence urinaire chez un jeune chien., Action vét., 1304, pp. 11-14.

24. DICKELE G., PERROT P. and AUDRIN J. F., (1996)

Dysgénésie sacrée chez un chien de race Pékinois, analogue à l'anomalie des chats de l'île de Manx., *Prat. Méd. Chir. Anim. Comp.*, **31**, pp. 149-152.

- **25.** DUFFEY M. H., BARNHART M. D., BARTHEZ P. Y. and SMEAK D. D., (1998) **Incomplete urethral duplication with cyst formation in a dog**, J. Am. Vet. Med. Assoc., **213**; (9), pp. 1287-1289.
- **26.** DYCE K. M., SACK W. O. and WENSING C. J. G. (2002) **Textbook of veterinary anatomy**, 3rd edition ed.Saunders, Philadelphia, 840 p.
- 27. ERICKSON F., SAPERSTEIN G., LEIPOLD H. W. and McKINLEY J., (1977) Congenital defects of the dogs - Part 2, Can. Pract., 4; (5), pp. 51-61.
- 28. FINGEROTH J. M., JOHNSON G. C., BURT J. K., FENNER W. R. and CAIN L. S., (1989)

Neuroradiographic diagnosis and surgical repair of tethered cord syndrome in an English Bulldog with spina bifida and myeloschisis., J. Am. Vet. Med. Assoc., 194; (9), pp. 1300-1302.

29. FINGLAND R. B., (2000)

Surgery of the urinary bladder, In: BIRCHARD S. J. and SHERDING R. G. (eds). Saunders Manual of Small Animal Practice, 2nd ed., W.B. Saunders Company Philadelphia, pp. 958-963.

30. FOSSUM T. W., (2002)

Surgery of the kidney and ureter, In: FOSSUM T. W. (ed). Small Animal Surgery, 2nd ed., Mosby St Louis, pp. 549-571.

31. GAROSI L., (2001)

Examen neurologique de la moelle épinière. Encyclopédie vétérinaire, Elsevier Paris, pp. 1-7.

32. GIRARD A., (2002)

Troubles neurogènes de la miction, Point Vét., 230, pp. 39.

33. GOOKIN J. L., STONE E. A. and SHARP N. J., (1996)

Urinary incontinence in dogs and cats. Part II. Diagnosis and management, Compend. Contin. Educ. Pract. Vet., 18; (5), pp. 525-537.

34. GOTTHELF L. N. and BARNETT T., (1996)

Male pseudohermaphroditism in a dog, Vet. Med., 91; (4), pp. 308.

35. GOULDEN B., BERGMAN M. M. and WYBURN R. S., (1973)

Canine urethro-rectal fistulae, J. Small Anim. Pract., 14, pp. 143-150.

36. GRAUER F. G., (1996)

Diagnosis and management of disorders of micturition. TNAVC, pp. 276-278.

37. GREGORY S. P. and TROWER N. D., (1997)

Surgical treatment of urinary incontinence resulting from a complex congenital **abnormality in two dogs**, *J. Small Anim. Pract.*, **38**, pp. 25-28.

38. GUILLEMOT A., WARKOCZ S. and TESTAULT I., (1999)

Urétérocèle associée à un uretère ectopique chez un chien, *Prat. Méd. Chir. Anim. Comp.*, **34**, pp. 165-170.

39. HAYES H. M., (1984)

Breed associations of canine ectopic ureter: a study of 217 female cases, *J. Small Anim. Pract.*, **25**, pp. 501-504.

40. HOFFMAN S. and FERGUSON H. R., (1991)

Ureterocele in a dog. Case study., J. Am. Anim. Hosp. Assoc., 27, pp. 93-95.

41. HOLT P. E., (1989)

Feline urinary incontinence, In: KIRK R. W. (ed). *Current Veterinary Therapy X Small Animal Practice*, W.B. Saunders Company Philadelphia, pp. 1018-1022.

42. HOLT P. E., (1989)

Positive-contrast vaginourethrography for diagnosis of lower urinary tract disease, In: KIRK R. W. (ed). *Current Veterinary Therapy X Small Animal Practice*, W.B. Saunders Company Philadelphia, pp. 1142-1145.

43. HOLT P. E., (1988)

"Simultaneous" urethral pressure profilometry: Comparisons between continent and incontinent bitches, J. Small Anim. Pract., 29, pp. 761-769.

44. HOLT P. E., (1993)

Surgical management of congenital urethral sphincter mechanism incompetence in eight female cats and a bitch, *Vet. Surg.*, **22**; (2), pp. 98-104.

45. HOLT P. E., (1997)

Urinary incontinence in cats, Vet. Rec., 140, pp. 160.

46. HOLT P. E., (1990)

Urinary incontinence in dogs and cats, Vet. Rec., 127, pp. 347-350.

47. HOLT P. E., (1985)

Urinary incontinence in the bitch due to sphincter mechanism incompetence: prevalence in referred dogs and retrospective analysis of sixty cases., *J. Small Anim. Pract.*, **26**, pp. 181-190.

48. HOLT P. E. and GIBBS C., (1992)

Congenital urinary incontinence in cats: a review of 19 cases, Vet. Rec., 130; (20), pp. 437-442.

49. HOLT P. E., GIBBS C. and LATHAM J., (1984)

An evaluation of positive contrast vaginourethrography as a diagnostic aid in the bitch, *J. Small Anim. Pract.*, **25**, pp. 531-549.

50. HOLT P. E., GIBBS C. and PEARSON H., (1982)

Canine ectopic ureter - a review of twenty-nine cases, J. Small Anim. Pract., 23, pp. 195-208.

51. HOLT P. E., LONG S. E. and GIBBS C., (1983)

Disorders of urination associated with canine intersexuality., *J. Small Anim. Pract.*, **24**, pp. 475-487.

52. HOLT P. E. and MOORE A. H., (1995)

Canine ureteral ectopia: an analysis of 175 cases and comparison of surgical treatments, *Vet. Rec.*, 136, pp. 345-349.

53. HOLT P. E. and SAYLE B., (1981)

Congenital vestibulo-vaginal stenosis in the bitch, J. Small Anim. Pract., 22; (2), pp. 67-75.

54. HOSKINS J. D. and TABOADA J., (1992)

Congenital defects of dogs, Compend. Contin. Educ. Pract. Vet., 14; (7), pp. 873-897.

55. HUE T. A., (1998)

L'ectopie urétérale chez les carnivores domestiques: revue bibliographique, *Thèse de doctorat vétérinaire*, Université Paul Sabatier, Toulouse, 86 p.

56. INDRIERI R. J., (1988)

Lumbosacral stenosis and injury of the cauda equina, *Vet. Clin. North Am. Small Anim. Pract.*, **18**; (3), pp. 697-710.

57. KAUFMANN M. L., OSBORNE C. A., JOHNSTON G. R., O'BRIEN T. D., LEVINE S. H. and HARTMANN W. L., (1987)

Renal ectopia in a dog and a cat, J. Am. Vet. Med. Assoc., 190; (1), pp. 73-77.

58. KOIE H., YAMAYA Y. and SAKAI T., (2000)

Four cases of lowered urethral pressure in canine ectopic ureter, *J. Vet. Med. Sci.*, **62**; (11), pp. 1221-1222.

59. KRAWIEC D. R., (2000)

Diseases of the urethra, In: BIRCHARD S. J. and SHERDING R. G. (eds). *Saunders Manual of Small Animal Practice*, 2nd ed., W.B. Saunders Company Philadelphia, pp. 964-968.

- **60.** KRUGER J. M., OSBORNE C. A., LULICH J. P. and OAKLEY R. E., (1996) **Inherited and congenital diseases of the feline lower urinary tract**, *Vet. Clin. North Am. Small Anim. Pract.*, **26**; (2), pp. 265-279.
- **61.** KUIPER H. and DISTL O., (2004)

XX/XY chromosome chimaerism in a Border Terrier, Vet. Rec., 154, pp. 637.

62. LAMB C. R., (1998)

Ultrasonography of the ureters, *Vet. Clin. North Am. Small Anim. Pract.*, **28**; (4), pp. 823-848.

63. LAMB C. R. and GREGORY S. P., (1998)

Ultrasonographic findings in 14 dogs with ectopic ureter, Vet. Radiol. Ultrasound, 39; (3), pp. 218-223.

64. LANE I., (2003)

Treating urinary incontinence, Vet. Med., 98; (1), pp. 58-65.

65. LANE I. F. and LAPPIN M. R., (1995)

Urinary incontinence and congenital urogenital anomalies in small animals, In: J.D. B. (ed). *Current Vet Therapy XII Small Animal Practice*, W.B. Saunders Company Philadelphia.

66. LANE I. F., LAPPIN M. R. and SEIM H. B., (1995)

Evaluation of results of preoperative urodynamic measurements in nine dogs with ectopic ureters, *J. Am. Vet. Med. Assoc.*, **206**; (9), pp. 1348-1357.

67. LAPISH J. P., (1985)

Hydronephrosis, hydroureter and hydrometra associated with ectopic ureter in a bitch, *J. Small Anim. Pract.*, **26**, pp. 613-617.

68. LEIPOLD H. W., HUSTON K., BLAUCH B. and GUFFY M. M., (1974)

Congenital defects of the caudal vertebral column and spinal cord in Manx cats, *J. Am. Vet. Med. Assoc.*, **164**; (5), pp. 520-523.

69. LESOT R., (1998)

Anomalies congénitales et héréditaires de l'appareil urinaire du chien et du chat., *Thèse de doctorat vétérinaire*, Faculté de médecine de Créteil, 114 p.

70. LIEB S. and MONROE W., (1997)

Neurologic diseases. *Practical Small Animal Internal Medicine*, W.B. Saunders Company Philadelphia.

71. LIGNEREUX Y., (1995)

Anatomie urinaire. Encyclopédie vétérinaire, Elsevier Paris, pp. 1-10.

72. MAGNIEN V., (2003)

Affections chirurgicales de la vessie chez les carnivores domestiques. Techniques opératoires., *Thèse de doctorat vétérinaire*, Université Claude Bernard, Lyon, 137 p.

73. MAÏ W. (2003)

Guide pratique de radiographie canine et féline MED'COM, Paris, 350 p.

74. MARCHEVSKY A. M., EDWARDS G. A., LAVELLE R. B. and ROBERTSON I. D., (1999)

Colposuspension in 60 bitches with incompetence of the urethral sphincter mechanism., *Aust. Vet. Pract.*, **29**; (1), pp. 2-8.

75. MARTIN A. H., (1971)

A congenital defect in the spinal cord of the Manx Cat, Vet. Pathol., 8, pp. 232-238.

76. McLAUGHLIN R. and MILLER C. W., (1991)

Urinary incontinence after surgical repair of ureteral ectopia in dogs, *Vet. Surg.*, **20**; (2), pp. 100-103.

77. McLOUGHLIN M. A. and CHEW D. J., (2000)

Diagnosis and surgical management of ectopic ureters, *Clin. Techn. in Small Anim. Pract.*, **15**; (1), pp. 17-24.

78. McLOUGHLIN M. A., HAUPTMAN J. and SPAULDING K., (1989)

Canine ureteroceles: a case report and literature review., J. Am. Anim. Hosp. Assoc., 25, pp. 699-706.

79. MORAILLON R., (2001)

Affections de la moelle épinière. Encyclopédie vétérinaire, Elsevier Paris, pp. 1-8.

80. MOUATT J. G. and WATT P. R., (2001)

Ectopic ureter repair and colposuspension in seven bitches, *Aust. Vet. Pract.*, **31**; (4), pp. 160-167.

81. NELSON R. and COUTO C., (2003)

Disorders of micturition. *Small Animal Internal Medicine*, 3rd ed., Mosby St-Louis, pp. 650-659.

82. NELSON R. and COUTO C., (2003)

Disorders of the spinal cord. *Small Animal Internal Medicine*, 3rd ed., Mosby St-Louis, pp. 1020-1048.

83. OSBORNE C. A., ENGEN M. H., YANO B., BRASMER T. H., JESSEN C. R. and BLEVINS W. E., (1975)

Congenital urethrorectal fistula in two dogs, J. Am. Vet. Med. Assoc., 166; (10), pp. 999-1002.

84. OSBORNE C. A., LOW D. G. and FINCO D. R., (1976)

Incontinence urinaire. *Urologie du chien et du chat*, Vigot Paris.

85. PELERIN F. and WITZ M., (1998)

Uretère ectopique intra-mural, Action vét., 1456, pp. 19-26.

86. PEREZ L., FLORES E. and LETELIER A., (1978-1979)

Malformation of the urinary bladder and its surgical treatment., *Vet. Med. Rev.*, **2**, pp. 95-102.

87. PLUMMER S. B., BUNCH S. E., KHOO L. H., SPAULDING K. A. and KORNEGAY J. N., (1993)

Tethered spinal cord and an intradural lipoma associated with a meningocele in a Manx-type cat., J. Am. Vet. Med. Assoc., 203; (8), pp. 1159-1161.

88. RALPHS S. C. and KRAMEK B. A., (2003)

Novel perineal approach for repair of a urethrorectal fistula in a bulldog, Can. Vet. J., 44, pp. 822-823.

89. RAWLINGS C. A., (1984)

Correction of congenital defects of urogenital system, *Vet. Clin. North Am. Small Anim. Pract.*, **14**; (1), pp. 49-60.

- **90.** ROOT M. V., JOHNSTON S. D. and JOHNSTON G. R., (1995) **Vaginal septa in dogs: 15 cases (1983-1992).** *J. Am. Vet. Med. Assoc.*, **206**; (1), pp. 56-58.
- 91. ROYER D. and DEJUMNE C., (2001)

 Transposition d'un protère ectopique par tunnellisation chez une ch

Transposition d'un uretère ectopique par tunnellisation chez une chienne, *Prat. Méd. Chir. Anim. Comp.*, **36**, pp. 659-663.

92. RUEL Y. and COTARD J. P., (1996)

Imagerie du rein et des voies excrétrices, Rec. Med. Vet., 172; (1/2), pp. 105-116.

93. SAMII V. F., McLOUGHLIN M. A., MATTOON J. S., DROST W. T., CHEW D. J., DIBARTOLA S. P. and HOSHAW-WOODARD S., (2004)

Digital fluoroscopic excretory urography, digital fluoroscopic urethrography, helical computed tomography, and cystoscopy in 24 dogs with suspected ureteral ectopia, *J. Vet. Intern. Med.*, **18**, pp. 271-281.

94. SEGEDY A. K., YANO B. and JERAJ K., (1979)

Sacral spinal cord agenesis in a kitten, J. Am. Vet. Med. Assoc., 174; (5), pp. 510-513.

95. SHAMIR M., ROCHKIND S. and JOHNSTON D., (2001)

Surgical treatment of tethered spinal cord syndrome in a dog with myelomeningocele., *Vet. Rec.*, **148**, pp. 755-756.

96. SIMIAN-SALVAY B., (1996)

Incontinence par incompétence sphinctérienne chez la chienne, *Action Vét.*, **1349**, pp. 27-33.

97. STONE E. A. and MASON L. K., (1990)

Surgery of ectopic ureters: types, method of correction, and postoperative results, *J. Am. Anim. Hosp. Assoc.*, **26**, pp. 81-88.

98. SUTHERLAND-SMITH J., JERRAM R. M., WALKER A. M. and WARMAN C. G. A., (2004)

Ectopic ureters and ureteroceles in dogs: presentation, cause, and diagnosis, *Compend. Contin. Educ. Pract. Vet.*, **26**; (4), pp. 303-310.

99. SUTHERLAND-SMITH J., JERRAM R. M., WALKER A. M. and WARMAN C. G. A., (2004)

Ectopic ureters and ureteroceles in dogs: treatment, *Compend. Contin. Educ. Pract. Vet.*, **26**; (4), pp. 311-315.

- **100.** TANEY K. G., MOORE K. W., CARRO T. and SPENCER C., (2003)
- Bilateral ectopic ureters in a male dog with unilateral renal agenesis, J. Am. Vet. Med. Assoc., 223; (6), pp. 817-820.
- **101.** TARDIEU C., (1996)

Le syndrome de la queue de cheval chez le chien: étude bibliographique., *Thèse de doctorat vétérinaire*, Université Paul-Sabatier, Toulouse, 127 p.

102. TOBIAS K. S. and BARBEE D., (1995)

Abnormal micturition and recurrent cystitis associated with multiple congenital anomalies of the urinary tract in a dog, J. Am. Vet. Med. Assoc., 207; (2), pp. 191-193.

103. WARKOCZ S., (2000)

L'uretère ectopique: étude bibliographique et contribution personnelle, *Thèse de doctorat vétérinaire*, Faculté de médecine, Nantes, 116 p.

104. WARKOCZ S. and TESTAULT I., (1999)

Incontinence urinaire chez une jeune chienne, Point Vét., 30; (202), pp. 579-583.

105. WILSON J. W., KURTZ H. J., LEIPOLD H. W. and LEES G. E., (1979) **Spina bifida in the dog**, *Vet. Pathol.*, **16**, pp. 165-179.

ANNEXE 1: L'UROGRAPHIE INTRAVEINEUSE [73]

But:

L'urographie intraveineuse permet d'évaluer la taille, la forme et la position des reins ainsi que des uretères et de la vessie [73].

Technique:

L'animal doit être soigneusement préparé avant cet examen. Son **intestin doit être vide**, sa **vessie vidée** et il doit être **correctement hydraté** [73; 92; 98]. La déshydratation constitue en effet une contre-indication à l'urographie intraveineuse, en favorisant les complications d'hypotension et d'insuffisance rénale aiguë associées à l'administration de produit de contraste iodé [73].

Un **cathéter intraveineux** de gros diamètre est placé pour permettre l'injection intraveineuse rapide du produit de contraste ^[73; 92].

Une **forte tranquillisation** ou mieux encore une **anesthésie générale** est recommandée pour faire cet examen ^[73].

Comme pour toutes les techniques avec produit de contraste, l'urographie intraveineuse doit toujours être précédée de **clichés radiographiques sans préparation** (face et profil) ^[73]. Ceux-ci ont pour intérêt de définir les constantes radiographiques, de s'assurer que la préparation de l'animal est satisfaisante et surtout de rechercher toute anomalie visible sans préparation ^[92].

Le produit de contraste utilisé est en général un **produit iodé ionique** comme le iothalamate de sodium et de méglumine (Telebrix 35®). Des produits iodés non ioniques comme le iohexol (Omnipaque®) peuvent aussi être employés mais ils sont plus onéreux et ne présentent pas beaucoup d'avantages [73].

La quantité de produit de contraste à utiliser dépend de sa concentration en iode : on préconise une **posologie de 600 à 800 mg d'iode par kg**, soit 2 ml/kg de Telebrix 35® ^[73; 92; 104]. L'injection de produit de contraste est faite par voie intraveineuse, le plus rapidement possible.

La bonne opacification des reins suite à l'administration veineuse de ces produits est liée au fait qu'ils sont rapidement et quasiment exclusivement éliminés par voie rénale, par filtration glomérulaire [73].

Le passage de produit de contraste après filtration glomérulaire dans les tubules rénaux proximaux permet d'opacifier le parenchyme rénal et constitue la phase du **néphrogramme**. Dans le rein normal, cette phase est visible quelques secondes à quelques minutes après l'injection du produit de contraste [73; 92].

La seconde phase de l'urographie, appelée **pyélogramme**, résulte de l'accumulation de produit de contraste dans le bassinet et ses diverticules puis dans les uretères ^[73; 92]. La visualisation des *uretères* est maximale environ 5 minutes après l'injection du produit de contraste, la *vessie* est opacifiée 20 à 40 minutes après ^[92].

Séquence des radiographies :

L'examen urographique nécessite des clichés abdominaux légèrement surexposés afin de mieux visualiser les structures opacifiées. L'emploi d'un kilovoltage bas permet de préserver un bon contraste [92].

Des clichés en incidence ventro-dorsale et latérale sont obtenus juste après l'injection du produit de contraste, puis répétés 3 à 5 minutes après l'injection. On effectue ensuite une compression de l'abdomen caudal afin d'améliorer l'opacification des récessus pyéliques en retardant l'écoulement d'urine dans les uretères et on réalise de nouveaux clichés 10 minutes après l'injection. Enfin, on relâche l'abdomen et des clichés sont obtenus 15 à 20 minutes après l'injection [73; 92].

Pour la recherche spécifique d'uretères ectopiques :

Après l'injection du produit de contraste en intraveineuse, on injecte 10 à 15 ml/kg d'air dans la vessie par un cathéter urinaire. 10 à 15 minutes après l'injection, des clichés de profil et de ³/₄ gauche et droit sont réalisés. Le remplissage des uretères étant irrégulier à cause du péristaltisme, il est souvent nécessaire de renouveler les clichés ^[85; 92].

Complications:

Les complications de l'urographie intraveineuse sont relativement rares. La plus redoutée est **l'hypotension** compliquée d'une **insuffisance rénale aiguë**. Le **choc anaphylactique** est une complication rare chez les carnivores domestiques. Des réactions mineures, telles que des **vomissements**, sont en revanche plus souvent rencontrées mais rétrocèdent spontanément [73; 92]

Une antibiothérapie est mise en place après cet examen car les complications de **cystite** dues au produit de contraste et à l'air dans la vessie sont fréquentes [85].

ANNEXE 2: LA CYSTOGRAPHIE [73]

But:

La cystographie consiste à injecter de l'air et/ou un produit de contraste dans la vessie afin d'obtenir un contraste différent.

Technique:

Il est important de s'assurer de la vacuité du côlon et du rectum.

Des radiographies sans préparation sont effectuées avant la cystographie.

Une tranquillisation ou une anesthésie générale sont conseillées.

Les **sondes** utilisées pour le cathétérisme de la vessie sont des sondes stériles, de type Tom Cat® chez le chat, des sondes urétrales longues ou des sondes de Foley de petit calibre à ballonnet chez le chien. Un robinet à trois voies est connecté à la sonde pour injecter les produits de contraste en limitant le reflux par la sonde.

La vessie doit être vidée avant la cystographie.

Pour réduire la douleur et le spasme vésical durant la cystographie, 2 à 5 ml de solution de **lidocaïne** à 2% (Xylocaïne®) peuvent être injectés dans la vessie juste avant la procédure.

Pour la cystographie simple contraste, un **produit de contraste iodé ionique hydrosoluble** est utilisé (Telebrix 35®). On le dilue dans du sérum physiologique pour obtenir une concentration de 200 mg d'iode par ml. Le volume injecté est alors de 5 à 10 ml/kg.

Lors de cystographie double contraste, on injecte une plus faible quantité de **produit de contraste iodé** que lors de cystographie simple (2 à 15 ml en fonction du format de l'animal) avec une concentration de 400 mg d'iode par ml.

L'animal est ensuite tourné sur lui-même pour répartir le produit de contraste. On introduit alors lentement de **l'air**, environ 10 ml/kg.

On réalise ensuite les clichés radiographiques (cf. Radiographie 28).

Complications:

Les complications de la cystographies sont rares. Des traumatismes de la paroi vésicale sont parfois observés lors de cathétérisme trop violent. Des complications infectieuses sont possibles.

Radiographie 28 : Cystographie double contraste chez un chien normal.

Maï [73]

ANNEXE 3: L'URETROGRAPHIE RETROGRADE [73]

But:

Les techniques d'urétrographie rétrograde permettent d'opacifier la lumière urétrale et la vessie par un produit de contraste.

Elles sont applicables au mâle comme à la femelle.

Technique:

On s'assure de la vacuité du côlon et du rectum avant l'examen [42].

Le produit de contraste utilisé est un **produit iodé ionique** utilisé à une concentration de 200 mg d'iode par ml environ. (Telebrix 35® dilué à 50% par exemple).

Une anesthésie générale ou une forte tranquillisation sont recommandées [42].

Pour réduire la douleur et le spasme vésical durant la cystographie, 2 à 5 ml de solution de **lidocaïne** à 2% (Xylocaïne®) peuvent être injectés dans la vessie juste avant la procédure.

<u>Chez le chien mâle</u>, une **sonde de Foley à ballonnet** est placée à l'extrémité de l'urètre et le ballonnet est gonflé afin de la maintenir en place. La sonde est ensuite enduite de gel anesthésique et remplie de produit de contraste pour éviter d'introduire de l'air à l'intérieur de la vessie. Le volume de produit de contraste injecté est de 10 à 20 ml en fonction du format de l'animal.

La vidange de la vessie n'est pas nécessaire et permet même d'obtenir des images de meilleure qualité.

Des **clichés** de face et de profil voire obliques sont réalisés lors de l'injection des derniers ml de produit de contraste. L'animal est placé dans plusieurs positions : hanches en flexion et en extension afin des dégager les différentes parties de l'urètre.

<u>Chez le chat mâle</u>, une **sonde de Foley** de plus petit calibre est placée dans la partie distale de l'urètre, à environ 1,5 mm du méat urinaire. Le volume de produit de contraste est de 5 à 10 ml (cf. Radiographie 29).

Radiographie 29: <u>Urétrographie chez un chat mâle normal.</u>

Maï [73].

<u>Chez la chienne et la chatte</u>, la technique utilisée est une **vagino-urétrographie rétrograde**. L'anesthésie générale est obligatoire.

L'extrémité d'une **sonde à ballonnet** est placée dans la partie distale du vagin et le ballonnet est ensuite gonflé. La commissure vulvaire est fermée à l'aide de pinces atraumatiques.

Le produit de contraste est alors injecté dans le vagin, celui-ci se remplit et, sous l'effet de l'augmentation de pression, l'urètre se remplit par voie rétrograde.

La quantité de produit nécessaire varie de 30 à 90 ml suivant le format de l'animal. Le volume suffisant est en général atteint lorsqu'on sent une pression de retour sur le piston de la seringue.

Les **clichés** radiographiques sont alors pris immédiatement. On réalise des profils gauche et droit, des clichés obliques et dorso-ventraux (cf. Radiographie 30) [42].

Radiographie 30 : Vagino-urétrographie rétrograde chez une chienne normale.

Maï [73].

ANNEXE 4: EPREUVES URODYNAMIQUES

Définition et intérêts :

L'urétroprofilométrie :

La mesure de la pression urétrale permet d'établir un profil de pression intra-urétrale tout au long de l'urètre [33; 66; 98].

Ces profils sont utilisés pour rechercher l'incompétence du sphincter urétral ^[98]. On compare la longueur de l'urètre ayant une pression de fermeture efficace (pression urétrale supérieure à la pression intra-vésicale) chez des animaux suspects par rapport à des animaux sains ^[33].

Cet examen est indiqué dans les cas d'incontinence réfractaire aux traitements, pour évaluer la fonction urétrale chez des animaux atteints d'autres anomalies de l'appareil urinaire tel qu'un uretère ectopique, ou pour localiser les strictions ou les spasmes urétraux [33].

La cystomanométrie :

La cystomanométrie est l'étude de la pression vésicale pendant que celle-ci est remplie d'air, de gaz ou de fluide. On peut alors estimer la compliance et la capacité vésicale ainsi que les contractions involontaires ou répétées de la vessie [33].

La réalisation d'une cystomanométrie est indiquée dans les cas de désordres neurologiques avec suspicion d'anomalies de contraction vésicale, les suspicions d'atonie vésicale lors de mictions incomplètes, l'incontinence urinaire réfractaire [33].

Méthode:

Les profils de pression urétrale sont mesurés par un transducteur lié à un cathéter avec capteur de pression ou une technique de perfusion de fluides ^[66; 98]. La première méthode donne des résultats plus fiables ^[58].

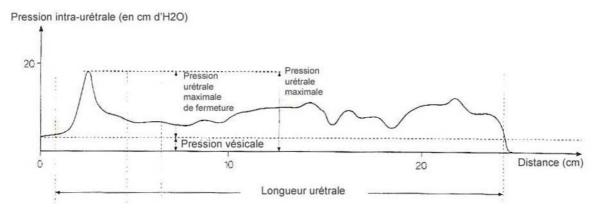
Les mesures se font sur un animal anesthésié, placé en décubitus latéral [12; 66]. Un cathéter est placé dans la vessie et celle-ci est vidée [58; 66].

Mesures:

Cystomanométrie:

La cystomanométrie mesure la pression intra-vésicale lors de différentes manipulations après introduction de CO2 dans la vessie [66].

Urétroprofilométrie :


Avec la technique par perfusion, une solution de NaCl stérile à 0,9% est perfusée au rythme de 2 ml/min par une pompe à perfusion pendant que le cathéter est progressivement retiré par un module d'urétroprofilométrie à la vitesse constante de 5 mm/s [12; 66].

La deuxième méthode consiste uniquement à retirer le cathéter à capteur de pression le long de l'urètre [58].

Les pressions le long de l'urètre sont alors transmises par un transducteur de pression sur un papier avec une vitesse correspondant à la vitesse de retrait du cathéter [66].

Les valeurs enregistrées sont :

- La pression intra-vésicale : pression mesurée lorsque le cathéter est dans la vessie.
- La pression urétrale maximale : pression maximale observée.
- La *pression urétrale maximale de fermeture* : la pression urétrale maximale moins la pression intra-vésicale.
- La *longueur du profil fonctionnelle* : la longueur de l'urètre où la pression urétrale est supérieure à la pression intra-vésicale.
- *L'aire du profil fonctionnelle* : aire sous la courbe créée par la pression urétrale maximale de fermeture et la longueur de profil fonctionnelle.
- L'aire du profil fonctionnelle par kg de poids vif

Figure 41 : <u>Profil de pression urétrale normal le long de l'urètre mâle.</u>
D'après Arnold et Weber ^[5].

Résultats:

La valeur utilisée couramment est la pression urétrale maximale de fermeture qui, lorsqu'elle est inférieure à 19 cm d'H2O, suggère une incompétence du sphincter urétral.

ANNEXE 5: SUTURES DU BAS APPAREIL URINAIRE [22]

Buts:

Le but des sutures du tractus urinaire est de maintenir l'apposition tissulaire afin de permettre une cicatrisation de la plaie chirurgicale par première intention.

Particularités cicatricielles du tractus urinaire :

Hormis quelques caractéristiques, la réponse du bas appareil urinaire au traumatisme chirurgical est semblable à celle des autres organes. Sa cicatrisation est caractérisée par une récupération rapide de la résistance.

Lors de la **phase inflammatoire**, qui dure 3 à 4 jours, le caillot de fibrine formé est le seul support d'union des berges de la plaie. Lorsque l'apposition est correcte et la suture solide, l'urothélium recouvre les bords de la plaie en 3 à 4 jours.

Lors de la **phase fibroblastique**, qui dure jusqu'au 14^{ème} jour, la formation du collagène immature permet une augmentation rapide et significative de la résistance de la plaie. Au 14^{ème} jour, la paroi vésicale retrouve 80% de sa solidité initiale, celle-ci atteint 100% au 21^{ème} jour. Le matériel de suture devra donc résister jusqu'à la fin de la phase fibroblastique.

La **phase de maturation** se prolonge jusqu'au $70^{\text{ème}}$ jour et est constituée par le réalignement des fibres de collagène suivant les lignes de tension.

La cicatrisation est favorisée par un geste chirurgical atraumatique et une irrigation régulière des tissus.

Ainsi, on utilise des fils de traction pour maintenir la vessie (cf. Photo 11). La pose des sutures est effectuée grâce à un contre-appui pariétal avec une pince mousse. Enfin, les sutures sont appliquées sans tension.

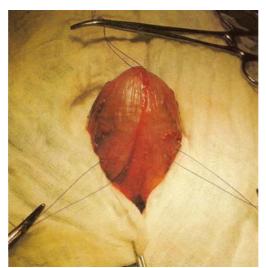


Photo 11 : Mise en place de fils de traction sur la vessie.

Pelerin et Witz [85].

Choix de l'aiguille :

L'utilisation **d'aiguilles serties** sur le fil de suture, de préférence avec un sertissage à chas foré permet de respecter une technique chirurgicale atraumatique.

L'utilisation **d'aiguilles à pointe et corps ronds** garantissent une étanchéité maximale autour du passage des fils. En cas d'épaississement pariétal important, il est possible d'utiliser une aiguille ronde modifiée dont la pointe est lancéolée ou triangulaire.

Choix du type de fil de suture :

Le matériel de suture doit être aussi résistant que le tissu receveur, doit résister pendant toute la durée de la cicatrisation, ne pas induire la formation de calculs et conserver ses qualités au contact d'une urine infectée.

On utilise de préférence des **fils résorbables** de manière à diminuer le risque calculogène et éviter un retard cicatriciel dû à la persistance d'une inflammation locale.

Fils tressés et spiralés :

Leur vitesse de dégradation et la grande sécurité du nœud en font des fils utilisables pour la chirurgie du bas appareil urinaire. En revanche, la modification du pH urinaire peut entraîner une augmentation importante de leur vitesse de dégradation.

Les fils utilisables sont l'acide polyglycolique (Dexon®) et la polyglactine 910 (Vicryl®, Polysorb®).

Fils monobrins:

Les avantages d'un fil monobrin sont la limitation des lésions tissulaires, la diminution d'adhérence des bactéries à la surface du fil et leur résistance à la traction supérieure à celle des fils tressés. L'infection entraîne une perte de résistance plus rapide, mais cependant moins marquée que pour les fils tressés, le risque calculogène est inférieur.

Les fils monobrins utilisables sont la polydioxanone (PDS II®), le glycomer (Biosyn®) et le polyglyconate (Maxon®).

Choix de la taille du fil de suture :

Le but des sutures est de contrer les forces de tension qui écartent les berges de la plaie tant que le tissu suturé n'est pas cicatrisé. Idéalement, elles devraient assurer une résistance identique à celle d'un tissu sain. Cependant, l'utilisation d'un fil de diamètre excessif augmente la quantité de matériel étranger au sein de la plaie, prolonge l'inflammation locale, nuit à la vascularisation, retarde la cicatrisation et favorise la lithogenèse. De plus, la pression intra-vésicale ne dépasse jamais 20 à 40 mmHg. Par conséquent, un fil fin suffit amplement pour les sutures du bas appareil urinaire.

Pour les cystorraphies :

Chez les animaux de moins de 10 kg, on utilise un fil **décimal 1**, chez les chiens de 10 à 30 kg, un fil **décimal 2**, et chez les chiens de plus de 30 kg, un fil **décimal 3**.

Pour les sutures urétérales, un fil de 5-0 à 8-0 est suffisant.

Pour les sutures urétrales, on utilise un fil de 3-0 à 5-0.

Choix du type de suture :

La suture doit être étanche, facile à poser et doit minimiser la tension incisionnelle tout en préservant la contenance vésicale, le diamètre urétéral ou urétral et la microvascularisation locale.

Cystorraphie:

La fermeture du bas appareil urinaire nécessite **d'inclure systématiquement la sous-muqueuse**, ce qui garantit l'ancrage de la suture. On prend soin en revanche de **ne pas pénétrer la muqueuse** afin de prévenir tout risque calculogène ^[97]. La suture doit inclure des berges saines.

Il existe deux techniques classiques de cystorraphie : en deux plans inversants ou en un plan simple appositionnel.

La **technique en un plan appositionnel** est préférée car elle permet de conserver la contenance vésicale, présente une meilleure étanchéité et une augmentation de la résistance plus rapide dans les 4 premiers jours. Des points simples ou un surjet peuvent être mis en place (cf. Photo 12).

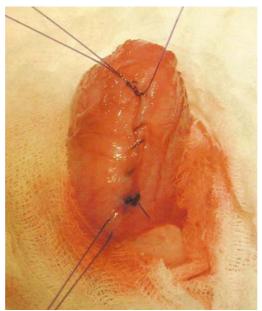


Photo 12 : Cystorraphie en un plan simple appositionnel.

Pelerin et Witz [85].

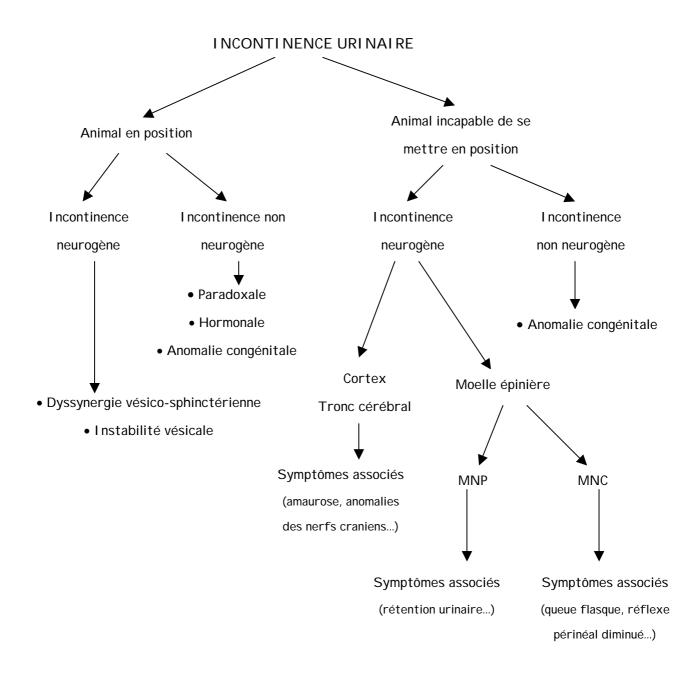
Un **test d'étanchéité** est réalisé grâce à l'injection de sérum physiologique dans la vessie. Une **épiploïsation** est toujours conseillée pour assurer la protection, le drainage et faciliter la cicatrisation de la plaie chirurgicale.

En phase postopératoire, il est important de limiter toute réplétion vésicale excessive.

Suture urétérale :

Les sutures urétérales peuvent être effectuées directement ou sur une sonde d'urétéronéphrostomie. Elles sont plus faciles à réaliser sous une loupe ou un microscope opératoire.

On effectue un plan de points simples appositionnels ou un surjet appositionnel. Les sutures sont perforantes et veillent à une apposition exacte de la muqueuse.


La **complication** la plus fréquente est la sténose ; parfois une fuite provoque un uro-péritoine.

Suture urétrale :

Les principes sont les mêmes que pour la suture urétérale. On choisit un surjet simple appositionnel perforant ou un plan de points simples perforants.

La **complication** la plus souvent rencontrée est la sténose.

ANNEXE 6 : DIAGNOSTIC DIFFERENTIEL DE L'INCONTINENCE URINAIRE [85]

DUPONT Anne-Laure

L'incontinence urinaire du jeune chez les carnivores domestiques.

Thèse Vétérinaire: Lyon, le 4 novembre 2005

RESUME:

L'incontinence urinaire est la perte du contrôle volontaire de la miction. Chez le jeune carnivore domestique, elle résulte de malformations congénitales uro-génitales ou neurologiques variées. Chez le chien comme chez le chat, l'ectopie urétérale est la cause majeure d'incontinence chez le jeune, suivie par l'incompétence du sphincter urétral. Le diagnostic différentiel est difficile et repose essentiellement sur l'utilisation de techniques d'imagerie médicale telles que la radiographie avec produit de contraste et l'échographie. L'endoscopie, la tomodensitométrie et l'urétroprofilométrie semblent néanmoins être des méthodes d'avenir. La correction des désordres mictionnels nécessite dans la majorité des cas une intervention chirurgicale.

MOTS CLES:

- INCONTINENCE URINAIRE

- CONGENITAL

- ECTOPIE URETERALE

- MICTION

- CHIEN

- CHAT

JURY:

Président : Monsieur le Professeur GHARIB

1er Assesseur : Monsieur le Professeur FAU 2ème Assesseur : Monsieur le Professeur ROGER

DATE DE SOUTENANCE:

4 novembre 2005

ADRESSE DE L'AUTEUR :

6 rue Saint Georges 71100 CHALON SUR SAÔNE